17 research outputs found

    Constructions of the soluble potentials for the non-relativistic quantum system by means of the Heun functions

    Full text link
    The Schr\"{o}dinger equation ψ"(x)+κ2ψ(x)=0\psi"(x)+\kappa^2 \psi(x)=0 where κ2=k2V(x)\kappa^2=k^2-V(x) is rewritten as a more popular form of a second order differential equation through taking a similarity transformation ψ(z)=ϕ(z)u(z)\psi(z)=\phi(z)u(z) with z=z(x)z=z(x). The Schr\"{o}dinger invariant IS(x)I_{S}(x) can be calculated directly by the Schwarzian derivative {z,x}\{z, x\} and the invariant I(z)I(z) of the differential equation uzz+f(z)uz+g(z)u=0u_{zz}+f(z)u_{z}+g(z)u=0. We find an important relation for moving particle as 2=IS(x)\nabla^2=-I_{S}(x) and thus explain the reason why the Schr\"{o}dinger invariant IS(x)I_{S}(x) keeps constant. As an illustration, we take the typical Heun differential equation as an object to construct a class of soluble potentials and generalize the previous results through choosing different ρ=z(x)\rho=z'(x) as before. We get a more general solution z(x)z(x) through integrating (z)2=α1z2+β1z+γ1(z')^2=\alpha_{1}z^2+\beta_{1}z+\gamma_{1} directly and it includes all possibilities for those parameters. Some particular cases are discussed in detail.Comment: 11 page

    Genome cloning and genetic evolution analysis of eight duck-sourced novel goose parvovirus strains in China in 2023

    Get PDF
    IntroductionThere are three major categories of waterfowl parvoviruses, namely goose parvovirus (GPV), Muscovy duck parvovirus, and novel goose parvovirus (NGPV). NGPV can infect both Cherry Valley ducks and mule ducks, resulting in short beaks and dwarfism syndrome, and the incidence of short beaks and dwarfism syndrome rises annually, posing a significant threat to the waterfowl breeding and the animal husbandry. Therefore, clarifying the biological characteristics and genetic evolution of NGPV is very important for the prevention and control of NGPV.MethodsDucks with short beaks and dwarfism syndrome from Shandong and Henan Province were investigated by dissection and the tissue samples were collected for study. The NGPV genome was amplified by PCR, and the genome was analyzed for genetic evolution.ResultsEight strains of NGPV were isolated, which were designated as HZ0512, HZ0527, HZ0714, HZ0723, HZ0726, HZ0811, HZ0815, and HN0403. The nucleotide homology among these strains ranged from 99.9% to 100%. The eight strains, along with other NGPVs, belong to GPV. The eight strains showed a 92.5%–98.9% nucleotide homology with the classical GPV, while a 96.0%–99.9% homology with NGPV.Therefore, it can be deduced that there have been no major mutations of NGPV in Shandong and Henan provinces in recent years.DiscussionThis study lays a theoretical foundation for further studying the genetic evolution and pathogenicity of NGPV, thereby facilitating the prevention and control of NGPV

    SARS-CoV-2 spike-reactive naïve B cells and pre-existing memory B cells contribute to antibody responses in unexposed individuals after vaccination

    Get PDF
    IntroductionSince December 2019, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has presented considerable public health challenges. Multiple vaccines have been used to induce neutralizing antibodies (nAbs) and memory B-cell responses against the viral spike (S) glycoprotein, and many essential epitopes have been defined. Previous reports have identified severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike-reactive naïve B cells and preexisting memory B cells in unexposed individuals. However, the role of these spike-reactive B cells in vaccine-induced immunity remains unknown.MethodsTo elucidate the characteristics of preexisting SARS-CoV-2 S-reactive B cells as well as their maturation after antigen encounter, we assessed the relationship of spike-reactive B cells before and after vaccination in unexposed human individuals. We further characterized the sequence identity, targeting domain, broad-spectrum binding activity and neutralizing activity of these SARS-CoV-2 S-reactive B cells by isolating monoclonal antibodies (mAbs) from these B cells.ResultsThe frequencies of both spike-reactive naïve B cells and preexisting memory B cells before vaccination correlated with the frequencies of spike-reactive memory B cells after vaccination. Isolated mAbs from spike-reactive naïve B cells before vaccination had fewer somatic hypermutations (SHMs) than mAbs isolated from spike-reactive memory B cells before and after vaccination, but bound SARS-CoV-2 spike in vitro. Intriguingly, these germline-like mAbs possessed broad binding profiles for SARS-CoV-2 and its variants, although with low or no neutralizing capacity. According to tracking of the evolution of IGHV4-4/IGKV3-20 lineage antibodies from a single donor, the lineage underwent SHMs and developed increased binding activity after vaccination.DiscussionOur findings suggest that spike-reactive naïve B cells can be expanded and matured by vaccination and cocontribute to vaccine-elicited antibody responses with preexisting memory B cells. Selectively and precisely targeting spike-reactive B cells by rational antigen design may provide a novel strategy for next-generation SARS-CoV-2 vaccine development

    Exact Solutions of the Razavy Cosine Type Potential

    No full text
    International audienceWe solve the quantum system with the symmetric Razavy cosine type potential and find that its exact solutions are given by the confluent Heun function. The eigenvalues are calculated numerically. The properties of the wave functions, which depend on the potential parameter , are illustrated for a given potential parameter . It is shown that the wave functions are shrunk to the origin when the potential parameter increases. We note that the energy levels () decrease with the increasing potential parameter but the energy levels () first increase and then decrease with the increasing

    The Distribution Characteristics of Aerosol Bacteria in Different Types of Pig Houses

    No full text
    With the development of modern pig raising technology, the increasing density of animals in pig houses leads to the accumulation of microbial aerosols in pig houses. It is an important prerequisite to grasp the characteristics of bacteria in aerosols in different pig houses to solve the problems of air pollution and disease prevention and control in different pig houses. This work investigated the effects of growth stages on bacterial aerosol concentrations and bacterial communities in pig houses. Three traditional types of closed pig houses were studied: farrowing (FAR) houses, weaning (WEA) houses, and fattening (FAT) houses. The Andersen six-stage sampler and high-volume air sampler were used to assess the concentrations and size distribution of airborne bacteria, and 16S rRNA gene sequencing was used to identify the bacterial communities. We found that the airborne bacterial concentration, community richness, and diversity index increased with pig age. We found that Acinetobacter, Erysipelothrix, Streptococcus, Moraxella, and Aerococcus in the microbial aerosols of pig houses have the potential risk of causing disease. These differences lead us to believe that disinfection strategies for pig houses should involve a situational focus on environmental aerosol composition on a case-by-case basis

    Real-Time Reverse Transcription Recombinase-Aided Amplification Assay for Rapid Amplification of the <i>N</i> Gene of SARS-CoV-2

    No full text
    COVID-19 was officially declared a global pandemic disease on 11 March 2020, with severe implications for healthcare systems, economic activity, and human life worldwide. Fast and sensitive amplification of the severe acute respiratory syndrome virus 2 (SARS-CoV-2) nucleic acids is critical for controlling the spread of this disease. Here, a real-time reverse transcription recombinase-aided amplification (RT-RAA) assay, targeting conserved positions in the nucleocapsid protein gene (N gene) of SARS-CoV-2, was successfully established for SARS-CoV-2. The assay was specific to SARS-CoV-2, and there was no cross-reaction with other important viruses. The sensitivity of the real-time RT-RAA assay was 142 copies per reaction at 95% probability. Furthermore, 100% concordance between the real-time RT-RAA and RT-qPCR assays was achieved after testing 72 clinical specimens. Further linear regression analysis indicated a significant correlation between the real-time RT-RAA and RT-qPCR assays with an R2 value of 0.8149 (p < 0.0001). In addition, the amplicons of the real-time RT-RAA assay could be directly visualized by a portable blue light instrument, making it suitable for the rapid amplification of SARS-CoV-2 in resource-limited settings. Therefore, the real-time RT-RAA method allows the specific, sensitive, simple, rapid, and reliable detection of SARS-CoV-2

    The Indirect ELISA and Monoclonal Antibody against African Swine Fever Virus p17 Revealed Efficient Detection and Application Prospects

    No full text
    Since 2018, the outbreak and prevalence of the African swine fever virus (ASFV) in China have caused huge economic losses. Less virulent ASFVs emerged in 2020, which led to difficulties and challenges for early diagnosis and control of African swine fever (ASF) in China. An effective method of monitoring ASFV antibodies and specific antibodies against ASFV to promote the development of prevention techniques are urgently needed. In the present study, ASFV p17 was successfully expressed in CHO cells using a suspension culture system. An indirect enzyme-linked immunosorbent assay (ELISA) based on purified p17 was established and optimized. The monoclonal antibody (mAb) against p17 recognized a conservative linear epitope (3TETSPLLSH11) and exhibited specific reactivity, which was conducive to the identification of recombinant porcine reproductive and respiratory syndrome virus (PRRSV) expressing p17. The ELISA method efficiently detected clinical ASFV infection and effectively monitored the antibody levels in vivo after recombinant PRRSV live vector virus expressing p17 vaccination. Overall, the determination of the conserved linear epitope of p17 would contribute to the in-depth exploration of the biological function of the ASFV antigen protein. The indirect ELISA method and mAb against ASFV p17 revealed efficient detection and promising application prospects, making them ideal for epidemiological surveillance and vaccine research on ASF

    Pathogenicity and Transmissibility of Clade 2.3.4.4h H5N6 Avian Influenza Viruses in Mammals

    No full text
    Avian influenza viruses (AIVs) have the potential for cross-species transmission and pandemics. In recent years, clade 2.3.4.4 H5N6 AIVs are prevalent in domestic poultry, posing a threat to the domestic poultry industry and public health. In this study, two strains of H5N6 AIVs were isolated from chickens in Hebei, China, in 2019: A/chicken/Hebei/HB1907/2019(H5N6) and A/chicken/Hebei/HB1905/2019(H5N6). Phylogenetic analysis showed that both viral HA genes clustered in the 2.3.4.4h clade. Receptor binding analysis showed that the HB1905 strain preferentially binds to &alpha;-2,3-linked sialic acid (SA) receptors, while the HB1907 strain preferentially binds to &alpha;-2,3- and &alpha;-2,6-linked sialic acid (SA) receptors. During early infection, the HB1907 strain is highly replicable in MDCK cells, more so than the HB1905 strain. Pathogenicity assays in mice showed that both viruses could replicate in the lungs without prior adaptation, with HB1907 being more highly pathogenic in mice than the HB1905 strain. Significantly, both the HB1905 and HB1907 strains can be transmitted through direct contact among guinea pigs, but the transmission efficiency of the HB1907 strain through contact between guinea pigs is much greater than that of the HB1905 strain. These results strengthen the need for ongoing surveillance and early warning of H5N6 AIVs in poultry
    corecore