17 research outputs found

    Statistical Knowledge Assessment for Large Language Models

    Full text link
    Given varying prompts regarding a factoid question, can a large language model (LLM) reliably generate factually correct answers? Existing LLMs may generate distinct responses for different prompts. In this paper, we study the problem of quantifying knowledge contained in an LLM regarding a given set of facts. We propose KaRR, a statistical approach to assess factual knowledge for LLMs. The main idea is to estimate the ratio of LLM generating text corresponding to the answer entity given diverse prompts of the subject and the querying relation, versus it generating by random chances. Our assessment suite contains a comprehensive set of 994,123 entities and 600 relations, with 1,395,905 text aliases. We use our method to evaluate 20 LLMs of various sizes, including LLaMA, Alpaca, OPT, etc. Experiments show that our results have a strong correlation (0.43 Kendall's τ\tau) with the results of human assessment on LLMs. Our results reveal that the knowledge in LLMs with the same backbone architecture adheres to the scaling law, while tuning on instruction-following data sometimes compromises the model's capability to generate factually correct text reliably.Comment: Accepted by NeurIPS 202

    ImageNetVC: Zero-Shot Visual Commonsense Evaluation on 1000 ImageNet Categories

    Full text link
    Recently, Pretrained Language Models (PLMs) have been serving as general-purpose interfaces, posing a significant demand for comprehensive visual knowledge. However, it remains unclear how well current PLMs and their visually augmented counterparts (VaLMs) can master visual commonsense knowledge. To investigate this, we propose ImageNetVC, a fine-grained, human-annotated dataset specifically designed for zero-shot visual commonsense evaluation across 1,000 ImageNet categories. Utilizing ImageNetVC, we delve into the fundamental visual commonsense knowledge of both unimodal PLMs and VaLMs, uncovering the scaling law and the influence of the backbone model on VaLMs. Furthermore, we investigate the factors affecting the visual commonsense knowledge of large-scale models, providing insights into the development of language models enriched with visual commonsense knowledge. Our code and dataset are available at https://github.com/hemingkx/ImageNetVC

    Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis

    Full text link
    Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT). In this paper, we systematically investigate the advantages and challenges of LLMs for MMT by answering two questions: 1) How well do LLMs perform in translating a massive number of languages? 2) Which factors affect LLMs' performance in translation? We evaluate popular LLMs, including XGLM, OPT, BLOOMZ, and ChatGPT, on 102 languages. Our empirical results show that even the best model ChatGPT still lags behind the supervised baseline NLLB in 83.33% of translation directions. Through further analysis, we discover that LLMs exhibit new working patterns when used for MMT. First, prompt semantics can surprisingly be ignored when given in-context exemplars, where LLMs still show strong performance even with unreasonable prompts. Second, cross-lingual exemplars can provide better task instruction for low-resource translation than exemplars in the same language pairs. Third, we observe the overestimated performance of BLOOMZ on dataset Flores-101, indicating the potential risk when using public datasets for evaluation

    Extrapolating Large Language Models to Non-English by Aligning Languages

    Full text link
    Existing large language models show disparate capability across different languages, due to the imbalance in the training data. Their performances on English tasks are often stronger than on tasks of other languages. In this paper, we empower pre-trained LLMs on non-English languages by building semantic alignment across languages. We start from targeting individual languages by performing cross-lingual instruction-tuning (CoIT) on LLaMA, i.e. tuning it with translation task data and cross-lingual general task data to obtain cross-lingual models (x-LLaMAs), and formulate underlying scaling laws to investigate the advantages of using scalable translation data. Then we perform multilingual instruction-tuning (MuIT) with mixed resources to build multilingual m-LLaMA. We also illustrate how we leverage the scaling laws to optimize data allocation in a resource-constrained setting. Experiment results on cross-lingual benchmarks XQUAD and MLQA show that x-LLaMAs surpass the English instruction-tuned counterpart (Alpaca) by an average of 27.83% across six non-English languages. Evaluation results on translation dataset Flores-101 show that x-LLaMAs outperform previous LLaMA-based models by an average of 18.89%. Encouragingly, m-LLaMA achieves comparable performance to x-LLaMAs on individual languages and demonstrates the ability to follow multilingual instructions. Further analysis on response content and representation space reveals the alignment of the multilingual semantic space within the middle layers of m-LLaMA

    A Survey on In-context Learning

    Full text link
    With the increasing ability of large language models (LLMs), in-context learning (ICL) has become a new paradigm for natural language processing (NLP), where LLMs make predictions only based on contexts augmented with a few examples. It has been a new trend to explore ICL to evaluate and extrapolate the ability of LLMs. In this paper, we aim to survey and summarize the progress and challenges of ICL. We first present a formal definition of ICL and clarify its correlation to related studies. Then, we organize and discuss advanced techniques, including training strategies, demonstration designing strategies, as well as related analysis. Finally, we discuss the challenges of ICL and provide potential directions for further research. We hope that our work can encourage more research on uncovering how ICL works and improving ICL.Comment: Papers collected until 2023/05/2
    corecore