29 research outputs found
Refining the Optimization Target for Automatic Univariate Time Series Anomaly Detection in Monitoring Services
Time series anomaly detection is crucial for industrial monitoring services
that handle a large volume of data, aiming to ensure reliability and optimize
system performance. Existing methods often require extensive labeled resources
and manual parameter selection, highlighting the need for automation. This
paper proposes a comprehensive framework for automatic parameter optimization
in time series anomaly detection models. The framework introduces three
optimization targets: prediction score, shape score, and sensitivity score,
which can be easily adapted to different model backbones without prior
knowledge or manual labeling efforts. The proposed framework has been
successfully applied online for over six months, serving more than 50,000 time
series every minute. It simplifies the user's experience by requiring only an
expected sensitive value, offering a user-friendly interface, and achieving
desired detection results. Extensive evaluations conducted on public datasets
and comparison with other methods further confirm the effectiveness of the
proposed framework.Comment: Accepted by 2023 IJCAI Worksho
Generalized Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Imaging
This paper presents a modified approach for high-resolution, highly squint synthetic aperture radar (SAR) data processing. Several nonlinear chirp scaling (NLCS) algorithms have been proposed to solve the azimuth variance of the frequency modulation rates that are caused by the linear range walk correction (LRWC). However, the azimuth depth of focusing (ADOF) is not handled well by these algorithms. The generalized nonlinear chirp scaling (GNLCS) algorithm that is proposed in this paper uses the method of series reverse (MSR) to improve the ADOF and focusing precision. It also introduces a high order processing kernel to avoid the range block processing. Simulation results show that the GNLCS algorithm can enlarge the ADOF and focusing precision for high-resolution highly squint SAR data