50,184 research outputs found

    Polarizations in decays B_{u,d}\to VV and possible implications for R-parity violating SUSY

    Full text link
    Recently BABAR and Belle have measured anomalous large transverse polarizations in some pure penguin BVVB \to VV decays, which might be inconsistent with the Standard Model expectations. We try to explore its implications for R-parity violating (RPV) supersymmetry. The QCD factorization approach is employed for the hadronic dynamics of B decays. We find that it is possible to have parameter spaces solving the anomaly. Furthermore, we have derived stringent bounds on relevant RPV couplings from the experimental data, which is useful for further studies of RPV phenomena.Comment: 26 pages, 12 eps figures. Typos corrected and references added. Final version to appear in PR

    First principles investigation of transition-metal doped group-IV semiconductors: Rx{_x}Y1x_{1-x} (R=Cr, Mn, Fe; Y=Si, Ge)

    Full text link
    A number of transition-metal (TM) doped group-IV semiconductors, Rx_{x}Y1x_{1-x} (R=Cr, Mn and Fe; Y=Si, Ge), have been studied by the first principles calculations. The obtained results show that antiferromagnetic (AFM) order is energetically more favored than ferromagnetic (FM) order in Cr-doped Ge and Si with xx=0.03125 and 0.0625. In 6.25% Fe-doped Ge, FM interaction dominates in all range of the R-R distances while for Fe-doped Ge at 3.125% and Fe-doped Si at both concentrations of 3.125% and 6.25%, only in a short R-R range can the FM states exist. In the Mn-doped case, the RKKY-like mechanism seems to be suitable for the Ge host matrix, while for the Mn-doped Si, the short-range AFM interaction competes with the long-range FM interaction. The different origin of the magnetic orders in these diluted magnetic semiconductors (DMSs) makes the microscopic mechanism of the ferromagnetism in the DMSs more complex and attractive.Comment: 14 pages, 2 figures, 6 table

    Random matrices with external source and KP τ\tau functions

    Full text link
    In this paper we prove that the partition function in the random matrix model with external source is a KP τ\tau function.Comment: 12 pages, title change

    Entanglement changing power of two-qubit unitary operations

    Full text link
    We consider a two-qubit unitary operation along with arbitrary local unitary operations acts on a two-qubit pure state, whose entanglement is C_0. We give the conditions that the final state can be maximally entangled and be non-entangled. When the final state can not be maximally entangled, we give the maximal entanglement C_max it can reach. When the final state can not be non-entangled, we give the minimal entanglement C_min it can reach. We think C_max and C_min represent the entanglement changing power of two-qubit unitary operations. According to this power we define an order of gates.Comment: 11 page

    Geometrical and electronic structures of the (5, 3) single-walled gold nanotube from first-principles calculations

    Full text link
    The geometrical and electronic structures of the 4 {\AA} diameter perfect and deformed (5, 3) single-walled gold nanotube (SWGT) have been studied based upon the density-functional theory in the local-density approximation (LDA). The calculated relaxed geometries show clearly significant deviations from those of the ideally rolled triangular gold sheet. It is found that the different strains have different effects on the electronic structures and density of states of the SWGTs. And the small shear strain can reduce the binding energy per gold atom of the deformed SWGT, which is consistent with the experimentally observed result. Finally, we found the finite SWGT can show the metal-semiconductor transition.Comment: 11 pages, 4 figure

    Constructions of the soluble potentials for the non-relativistic quantum system by means of the Heun functions

    Full text link
    The Schr\"{o}dinger equation ψ"(x)+κ2ψ(x)=0\psi"(x)+\kappa^2 \psi(x)=0 where κ2=k2V(x)\kappa^2=k^2-V(x) is rewritten as a more popular form of a second order differential equation through taking a similarity transformation ψ(z)=ϕ(z)u(z)\psi(z)=\phi(z)u(z) with z=z(x)z=z(x). The Schr\"{o}dinger invariant IS(x)I_{S}(x) can be calculated directly by the Schwarzian derivative {z,x}\{z, x\} and the invariant I(z)I(z) of the differential equation uzz+f(z)uz+g(z)u=0u_{zz}+f(z)u_{z}+g(z)u=0. We find an important relation for moving particle as 2=IS(x)\nabla^2=-I_{S}(x) and thus explain the reason why the Schr\"{o}dinger invariant IS(x)I_{S}(x) keeps constant. As an illustration, we take the typical Heun differential equation as an object to construct a class of soluble potentials and generalize the previous results through choosing different ρ=z(x)\rho=z'(x) as before. We get a more general solution z(x)z(x) through integrating (z)2=α1z2+β1z+γ1(z')^2=\alpha_{1}z^2+\beta_{1}z+\gamma_{1} directly and it includes all possibilities for those parameters. Some particular cases are discussed in detail.Comment: 11 page

    Mesoscopic Kondo effect of a quantum dot embedded in an Aharonov-Bohm ring with intradot spin-flip scattering

    Full text link
    We study the Kondo effect in a quantum dot embedded in a mesoscopic ring taking into account intradot spin-flip scattering RR. Based on the finite-UU slave-boson mean-field approach, we find that the Kondo peak in the density of states is split into two peaks by this coherent spin-flip transition, which is responsible for some interesting features of the Kondo-assisted persistent current circulating the ring: (1) strong suppression and crossover to a sine function form with increasing RR; (2) appearance of a "hump" in the RR-dependent behavior for odd parity. RR-induced reverse of the persistent current direction is also observed for odd parity.Comment: 7 pages,6 figures, to be published by Europhys. Let
    corecore