29,649 research outputs found

    Infrared spectroscopy of the charge ordering transition in Na0.5_{0.5}CoO2_2

    Full text link
    We report infrared spectra of a Na0.5_{0.5}CoO2_2 single crystal which exhibits a sharp metal-insulator transition near 50 K due to the formation of charge ordering. In comparison with x=0.7 and 0.85 compounds, we found that the spectral weight associated with the conducting carriers at high temperature increases systematically with decreasing Na contents. The charge ordering transition only affects the optical spectra below 1000 cm1^{-1}. A hump near 800 cm1^{-1} develops below 100 K, which is accompanied by the appearance of new lattice modes as well as the strong anti-resonance feature of phonon spectra. At lower temperature TcoT_{co}, an optical gap develops at the magnitude of 2Δ3.5kBTco\Delta\approx3.5k_BT_{co}, evidencing an insulating charge density wave ground state. Our experimental results and analysis unequivocally point towards the importance of charge ordering instability and strong electron-phonon interaction in Nax_xCoO2_2 system.Comment: 4 pages, 3 figure

    Long-distant contribution and χc1\chi_{c1} radiative decays to light vector meson

    Full text link
    The discrepancy between the PQCD calculation and the CLEO data for χc1γV\chi_{c1}\to \gamma V (V=ρ0,ω,ϕV=\rho^0,\,\omega,\,\phi) stimulates our interest in exploring extra mechanism of χc1\chi_{c1} decay. In this work, we apply an important non-perturbative QCD effect, i.e., hadronic loop mechanism, to study χc1γV\chi_{c1}\to \gamma V radiative decay. Our numerical result shows that the theoretical results including the hadronic loop contribution and the PQCD calculation of χc1γV\chi_{c1}\to \gamma V are consistent with the corresponding CLEO data of χc1γV\chi_{c1}\to \gamma V. We expect further experimental measurement of χc1γV\chi_{c1}\to \gamma V at BES-III, which will be helpful to test the hadronic loop effect on χc1\chi_{c1} decay.Comment: 7 pages, 2 figures. Accepted for publication in Eur. Phys. J.

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Efficient computation of iceberg cubes by bounding aggregate functions

    Get PDF
    The iceberg cubing problem is to compute the multidimensional group-by partitions that satisfy given aggregation constraints. Pruning unproductive computation for iceberg cubing when nonantimonotone constraints are present is a great challenge because the aggregate functions do not increase or decrease monotonically along the subset relationship between partitions. In this paper, we propose a novel bound prune cubing (BP-Cubing) approach for iceberg cubing with nonantimonotone aggregation constraints. Given a cube over n dimensions, an aggregate for any group-by partition can be computed from aggregates for the most specific n-dimensional partitions (MSPs). The largest and smallest aggregate values computed this way become the bounds for all partitions in the cube. We provide efficient methods to compute tight bounds for base aggregate functions and, more interestingly, arithmetic expressions thereof, from bounds of aggregates over the MSPs. Our methods produce tighter bounds than those obtained by previous approaches. We present iceberg cubing algorithms that combine bounding with efficient aggregation strategies. Our experiments on real-world and artificial benchmark data sets demonstrate that BP-Cubing algorithms achieve more effective pruning and are several times faster than state-of-the-art iceberg cubing algorithms and that BP-Cubing achieves the best performance with the top-down cubing approach
    corecore