366 research outputs found
A Thermodynamically-Consistent Non-Ideal Stochastic Hard-Sphere Fluid
A grid-free variant of the Direct Simulation Monte Carlo (DSMC) method is
proposed, named the Isotropic DSMC (I-DSMC) method, that is suitable for
simulating dense fluid flows at molecular scales. The I-DSMC algorithm
eliminates all grid artifacts from the traditional DSMC algorithm; it is
Galilean invariant and microscopically isotropic. The stochastic collision
rules in I-DSMC are modified to yield a non-ideal structure factor that gives
consistent compressibility, as first proposed in [Phys. Rev. Lett. 101:075902
(2008)]. The resulting Stochastic Hard Sphere Dynamics (SHSD) fluid is
empirically shown to be thermodynamically identical to a deterministic
Hamiltonian system of penetrable spheres interacting with a linear core pair
potential, well-described by the hypernetted chain (HNC) approximation. We
apply a stochastic Enskog kinetic theory for the SHSD fluid to obtain estimates
for the transport coefficients that are in excellent agreement with particle
simulations over a wide range of densities and collision rates. The fluctuating
hydrodynamic behavior of the SHSD fluid is verified by comparing its dynamic
structure factor against theory based on the Landau-Lifshitz Navier-Stokes
equations. We also study the Brownian motion of a nano-particle suspended in an
SHSD fluid and find a long-time power-law tail in its velocity autocorrelation
function consistent with hydrodynamic theory and molecular dynamics
calculations.Comment: 30 pages, revision adding some clarifications and a new figure. See
also arXiv:0803.035
Stochastic Hard-Sphere Dynamics for Hydrodynamics of Non-Ideal Fluids
A novel stochastic fluid model is proposed with non-ideal structure factor
consistent with compressibility, and adjustable transport coefficients. This
Stochastic Hard Sphere Dynamics (SHSD) algorithm is a modification of the
Direct Simulation Monte Carlo (DSMC) algorithm and has several computational
advantages over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD
results in an equation of state and pair correlation function identical to that
of a deterministic Hamiltonian system of penetrable spheres interacting with
linear core pair potentials. The fluctuating hydrodynamic behavior of the SHSD
fluid is verified for the Brownian motion of a nano-particle suspended in a
compressible solvent.Comment: This work performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344 (LLNL-JRNL-401745). To appear in Phys. Rev. Lett. 200
Diffusive Transport Enhanced by Thermal Velocity Fluctuations
We study the contribution of advection by thermal velocity fluctuations to
the effective diffusion coefficient in a mixture of two indistinguishable
fluids. The enhancement of the diffusive transport depends on the system size L
and grows as \ln(L/L_0) in quasi two-dimensional systems, while in three
dimensions it scales as L_0^{-1}-L^{-1}, where L_0 is a reference length. The
predictions of a simple fluctuating hydrodynamics theory are compared to
results from particle simulations and a finite-volume solver and excellent
agreement is observed. Our results conclusively demonstrate that the nonlinear
advective terms need to be retained in the equations of fluctuating
hydrodynamics when modeling transport in small-scale finite systems.Comment: To appear in Phys. Rev. Lett., 201
- …