151 research outputs found

    Verapamil-Sensitive Transport of Quinacrine and Methylene Blue via the Plasmodium falciparum Chloroquine Resistance Transporter Reduces the Parasite's Susceptibility to these Tricyclic Drugs.

    Get PDF
    BACKGROUND: It is becoming increasingly apparent that certain mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) alter the parasite's susceptibility to diverse compounds. Here we investigated the interaction of PfCRT with 3 tricyclic compounds that have been used to treat malaria (quinacrine [QC] and methylene blue [MB]) or to study P. falciparum (acridine orange [AO]). METHODS: We measured the antiplasmodial activities of QC, MB, and AO against chloroquine-resistant and chloroquine-sensitive P. falciparum and determined whether QC and AO affect the accumulation and activity of chloroquine in these parasites. We also assessed the ability of mutant (PfCRT(Dd2)) and wild-type (PfCRT(D10)) variants of the protein to transport QC, MB, and AO when expressed at the surface of Xenopus laevis oocytes. RESULTS: Chloroquine resistance-conferring isoforms of PfCRT reduced the susceptibility of the parasite to QC, MB, and AO. In chloroquine-resistant (but not chloroquine-sensitive) parasites, AO and QC increased the parasite's accumulation of, and susceptibility to, chloroquine. All 3 compounds were shown to bind to PfCRT(Dd2), and the transport of QC and MB via this protein was saturable and inhibited by the chloroquine resistance-reverser verapamil. CONCLUSIONS: Our findings reveal that the PfCRT(Dd2)-mediated transport of tricyclic antimalarials reduces the parasite's susceptibility to these drugs

    Scalar Field Cosmology II: Superfluidity, Quantum Turbulence, and Inflation

    Full text link
    We generalize the big-bang model in a previous paper by extending the real vacuum scalar field to a complex vacuum scalar field, within the FLRW framework. The phase dynamics of the scalar field, which makes the universe a superfluid, is described in terms of a density of quantized vortex lines, and a tangle of vortex lines gives rise to quantum turbulence. We propose that all the matter in the universe was created in the turbulence, through reconnection of vortex lines, a process necessary for the maintenance of the vortex tangle. The vortex tangle grows and decays, and its lifetime is the era of inflation. These ideas are implemented in a set of closed cosmological equations that describe the cosmic expansion driven by the scalar field on the one hand, and the vortex-matter dynamics on the other. We show how these two aspects decouple from each other, due to a vast difference in energy scales. The model is not valid beyond the inflation era, but the universe remains a superfluid afterwards. This gives rise to observable effects in the present universe, including dark matter, galactic voids, non-thermal filaments, and cosmic jets.Comment: 29 pages, 7 figures, published versio

    Observation of vortex formation in an oscillating trapped Bose-Einstein condensate

    Get PDF
    We report on the observation of vortex formation in a Bose-Einstein condensate of Rb-87 atoms. Vortices are generated by superimposing an oscillating excitation to the trapping potential introduced by an external magnetic field. For small amplitudes of the external excitation field we observe a bending of the cloud axis. Increasing the amplitude we observe formation of a growing number of vortices in the sample. Shot-to-shot variations in both vortex number and position within the condensed cloud are observed, probably due to the intrinsic vortex nucleation dynamics. We discuss the possible formation of vortices and anti-vortices in the sample as well as possible mechanisms for vortex nucleation.Comment: 1 figure added, text modified, accepted for publication Phys. Rev.

    A natural orbital functional for the many-electron problem

    Get PDF
    The exchange-correlation energy in Kohn-Sham density functional theory is expressed as a functional of the electronic density and the Kohn-Sham orbitals. An alternative to Kohn-Sham theory is to express the energy as a functional of the reduced first-order density matrix or equivalently the natural orbitals. In the former approach the unknown part of the functional contains both a kinetic and a potential contribution whereas in the latter approach it contains only a potential energy and consequently has simpler scaling properties. We present an approximate, simple and parameter-free functional of the natural orbitals, based solely on scaling arguments and the near satisfaction of a sum rule. Our tests on atoms show that it yields on average more accurate energies and charge densities than the Hartree Fock method, the local density approximation and the generalized gradient approximations

    Phase transition from straight into twisted vortex-lines in dipolar Bose-Einstein condensates

    Get PDF
    The non-local non-linearity introduced by the dipole-dipole interaction plays a crucial role in the physics of dipolar Bose-Einstein condensates. In particular, it may distort significantly the stability of straight vortex lines due to the rotonization of the Kelvin-wave spectrum. In this paper we analyze this instability showing that it leads to a second-order-like phase transition from a straight vortex-line into novel helical or snake-like configurations, depending on the dipole orientation.Comment: 11 pages, 6 figures, Accepted for publication in New J. Phy

    The physics of dipolar bosonic quantum gases

    Full text link
    This article reviews the recent theoretical and experimental advances in the study of ultracold gases made of bosonic particles interacting via the long-range, anisotropic dipole-dipole interaction, in addition to the short-range and isotropic contact interaction usually at work in ultracold gases. The specific properties emerging from the dipolar interaction are emphasized, from the mean-field regime valid for dilute Bose-Einstein condensates, to the strongly correlated regimes reached for dipolar bosons in optical lattices.Comment: Review article, 71 pages, 35 figures, 350 references. Submitted to Reports on Progress in Physic

    A global invariant for three dimensional CR-manifolds

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46621/1/222_2005_Article_BF01404456.pd

    Metabolic responses to the acute ingestion of two commercially available carbonated beverages: A pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this placebo-controlled, double-blind cross-over study was to compare the effects of two commercially available soft drinks on metabolic rate.</p> <p>Methods</p> <p>After giving informed consent, twenty healthy men and women were randomly assigned to ingest 12 ounces of Celsiusℱ and, on a separate day, 12 ounces of Diet Coke¼. All subjects completed both trials using a randomized, counterbalanced design. Metabolic rate (via indirect calorimetry) and substrate oxidation (via respiratory exchange ratio) were measured at baseline (pre-ingestion) and at the end of each hour for 3 hours post-ingestion.</p> <p>Results</p> <p>Two-way ANOVA revealed a significant interaction (p < 0.001) between trials in metabolic rate. Scheffe post-hoc testing indicated that metabolic rate increased by 13.8% (+ 0.6 L/min, p < 0.001) 1 hr post, 14.4% (+0.63 L/min, p < 0.001) 2 hr post, and 8.5% (+0.37 L/min, p < 0.004) 3 hr post Celsiusℱ ingestion. In contrast, small (~4–6%) but statistically insignificant increases in metabolic rate were noted following Diet Coke<sup>¼ </sup>ingestion. No differences in respiratory exchange ratio were noted between trials.</p> <p>Conclusion</p> <p>These preliminary findings indicate Celsiusℱ has thermogenic properties when ingested acutely. The effects of repeated, chronic ingestion of Celsiusℱ on body composition are unknown at this time.</p

    Diagnostic accuracy and limit of detection of ten malaria parasite lactate dehydrogenase-based rapid tests for Plasmodium knowlesi and P. falciparum.

    Get PDF
    Background: Plasmodium knowlesi causes zoonotic malaria across Southeast Asia. First-line diagnostic microscopy cannot reliably differentiate P. knowlesi from other human malaria species. Rapid diagnostic tests (RDTs) designed for P. falciparum and P. vivax are used routinely in P. knowlesi co-endemic areas despite potential cross-reactivity for species-specific antibody targets. Methods: Ten RDTs were evaluated: nine to detect clinical P. knowlesi infections from Malaysia, and nine assessing limit of detection (LoD) for P. knowlesi (PkA1-H.1) and P. falciparum (Pf3D7) cultures. Targets included Plasmodium-genus parasite lactate dehydrogenase (pan-pLDH) and P. vivax (Pv)-pLDH. Results: Samples were collected prior to antimalarial treatment from 127 patients with microscopy-positive PCR-confirmed P. knowlesi mono-infections. Median parasitaemia was 788/”L (IQR 247-5,565/”L). Pan-pLDH sensitivities ranged from 50.6% (95% CI 39.6-61.5) (SD BIOLINE) to 87.0% (95% CI 75.1-94.6) (First ResponseÂź and CareStartℱ PAN) compared to reference PCR. Pv-pLDH RDTs detected P. knowlesi with up to 92.0% (95% CI 84.3-96.7%) sensitivity (Biocreditℱ). For parasite counts ≄200/”L, pan-pLDH (Standard Q) and Pv-pLDH RDTs exceeded 95% sensitivity. Specificity of RDTs against 26 PCR-confirmed negative controls was 100%. Sensitivity of six highest performing RDTs were not significantly different when comparing samples taken before and after (median 3 hours) antimalarial treatment. Parasite ring stages were present in 30% of pre-treatment samples, with ring stage proportions (mean 1.9%) demonstrating inverse correlation with test positivity of Biocreditℱ and two CareStartℱ RDTs.For cultured P. knowlesi, CareStartℱ PAN demonstrated the lowest LoD at 25 parasites/”L; LoDs of other pan-pLDH ranged from 98 to >2000 parasites/”L. Pv-pLDH LoD for P. knowlesi was 49 parasites/”L. No false-positive results were observed in either P. falciparum-pLDH or histidine-rich-protein-2 channels. Conclusion: Selected RDTs demonstrate sufficient performance for detection of major human malaria species including P. knowlesi in co-endemic areas where microscopy is not available, particularly for higher parasite counts, although cannot reliably differentiate among non-falciparum malaria
    • 

    corecore