278 research outputs found

    The Chemical Evolution of the Solar Neighbourhood: the Effect of Binaries

    Full text link
    In this paper we compute the time evolution of the elements (4He, 12C, 14N, 16O, 20Ne, 24Mg, 28Si, 32S, 40Ca and 56Fe) and of the supernova rates in the solar neighbourhood by means of a galactic chemical evolutionary code that includes in detail the evolution of both single and binary stars. Special attention is payed to the formation of black holes. Our main conclusions: in order to predict the galactic time evolution of the different types of supernovae, it is essential to compute in detail the evolution of the binary population, the observed time evolution of carbon is better reproduced by a galactic model where the effect is included of a significant fraction of intermediate mass binaries, massive binary mass exchange provides a possible solution for the production of primary nitrogen during the very early phases of galactic evolution, chemical evolutionary models with binaries or without binaries but with a detailed treatment of the SN Ia progenitors predict very similar age-metallicity relations and very similar G-dwarf distributions whereas the evolution of the yields as function of time of the elements 4He, 16O, 20Ne, 24Mg, 28Si, 32S and 40Ca differ by no more than a factor of two or three, the observed time evolution of oxygen is best reproduced when most of the oxygen produced during core helium burning in ALL massive stars serves to enrich the interstellar medium. This can be used as indirect evidence that (massive) black hole formation in single stars and binary components is always preceded by a supernova explosion.Comment: 59 page

    Delay time distribution of type Ia supernovae: theory vs. observation

    Full text link
    Two formation scenarios are investigated for type Ia supernovae in elliptical galaxies: the single degenerate scenario (a white dwarf reaching the Chandrasekhar limit through accretion of matter transferred from its companion star in a binary) and the double degenerate scenario (the inspiraling and merging of two white dwarfs in a binary as a result of the emission of gravitational wave radiation). A population number synthesis code is used, which includes the latest physical results in binary evolution and allows to differentiate between certain physical scenarios (such as the description of common envelope evolution) and evolutionary parameters (such as the mass transfer efficiency during Roche lobe overflow). The thus obtained theoretical distributions of type Ia supernova delay times are compared to those that are observed, both in morphological shape and absolute number of events. The critical influence of certain parameters on these distributions is used to constrain their values. The single degenerate scenario alone is found to be unable in reproducing the morphological shape of the observational delay time distribution, while use of the double degenerate one (or a combination of both) does result in fair agreement. Most double degenerate type Ia supernovae are formed through a normal, quasi-conservative Roche lobe overflow followed by a common envelope phase, not through two successive common envelope phases as is often assumed. This may cast doubt on the determination of delay times by using analytical formalisms, as is sometimes done in other studies. The theoretical absolute number of events in old elliptical galaxies lies a factor of at least three below the rates that are observed. While this may simply be the result of observational uncertainties, a better treatment of the effects of rotation on stellar structure could mitigate the discrepancy.Comment: 5 pages, 4 figures, to appear in proceedings of "Binary Star Evolution: Mass Loss, Accretion, and Mergers

    The dynamics of capital accumulation in the US: Simulations after Piketty

    Get PDF
    We calibrate a sequence of four nested models to study the dynamics of wealth accumulation. Individuals maximize a utility function whose arguments are consumption and investment. They desire to accumulate wealth for its own sake – this is not a life-cycle model. A competitive firm produces a single good from labor and capital; the rate of return to capital and the wage rate are market-clearing. The second model introduces political lobbying by the wealthy, whose purpose is to reduce the tax rate on capital income. The third model introduces differential rates of return to capitals of different sizes. The fourth model introduces inheritance and intergenerational mobility

    The detection of ultra-relativistic electrons in low Earth orbit

    Get PDF
    Aims. To better understand the radiation environment in low Earth orbit (LEO), the analysis of in-situ observations of a variety of particles, at different atmospheric heights, and in a wide range of energies, is needed. Methods. We present an analysis of energetic particles, indirectly detected by the Large Yield RAdiometer (LYRA) instrument on board ESA's Project for On-board Autonomy 2 (PROBA2) satellite as background signal. Combining Energetic Particle Telescope (EPT) observations with LYRA data for an overlapping period of time, we identified these particles as electrons with an energy range of 2 to 8 MeV. Results. The observed events are strongly correlated to geo-magnetic activity and appear even during modest disturbances. They are also well confined geographically within the L=4-6 McIlwain zone, which makes it possible to identify their source. Conclusions. Although highly energetic particles are commonly perturbing data acquisition of space instruments, we show in this work that ultra-relativistic electrons with energies in the range of 2-8 MeV are detected only at high latitudes, while not present in the South Atlantic Anomaly region.Comment: Topical Issue: Flares, CMEs and SEPs and their space weather impacts; 20 pages; 7 figures; Presented during 13th European Space Weather Week, 201

    Irreversible thermodynamics of open chemical networks I: Emergent cycles and broken conservation laws

    Get PDF
    In this and a companion paper we outline a general framework for the thermodynamic description of open chemical reaction networks, with special regard to metabolic networks regulating cellular physiology and biochemical functions. We first introduce closed networks "in a box", whose thermodynamics is subjected to strict physical constraints: the mass-action law, elementarity of processes, and detailed balance. We further digress on the role of solvents and on the seemingly unacknowledged property of network independence of free energy landscapes. We then open the system by assuming that the concentrations of certain substrate species (the chemostats) are fixed, whether because promptly regulated by the environment via contact with reservoirs, or because nearly constant in a time window. As a result, the system is driven out of equilibrium. A rich algebraic and topological structure ensues in the network of internal species: Emergent irreversible cycles are associated to nonvanishing affinities, whose symmetries are dictated by the breakage of conservation laws. These central results are resumed in the relation a+b=sYa + b = s^Y between the number of fundamental affinities aa, that of broken conservation laws bb and the number of chemostats sYs^Y. We decompose the steady state entropy production rate in terms of fundamental fluxes and affinities in the spirit of Schnakenberg's theory of network thermodynamics, paving the way for the forthcoming treatment of the linear regime, of efficiency and tight coupling, of free energy transduction and of thermodynamic constraints for network reconstruction.Comment: 18 page

    Search for an Near-IR Counterpart to the Cas A X-ray Point Source

    Get PDF
    We report deep near-infrared and optical observations of the X-ray point source in the Cassiopeia A supernova remnant, CXO J232327.9+584842. We have identified a J=21.4 +/- 0.3 mag and Ks=20.5 +/- 0.3 mag source within the 1-sigma error circle, but we believe this source is a foreground Pop II star with Teff=2600-2800 K at a distance of ~2 kpc, which could not be the X-ray point source. We do not detect any sources in this direction at the distance of Cas A, and therefore place 3-sigma limits of R >~ 25 mag, F675W >~ 27.3 mag, J >~ 22.5 mag and Ks >~ 21.2 mag (and roughly H >~ 20 mag) on emission from the X-ray point source, corresponding to M_{R} >~ 8.2 mag, M_{F675W} >~ 10.7 mag, M_{J} >~ 8.5 mag, M_{H} >~ 6.5 mag, and M_{Ks} >~ 8.0 mag, assuming a distance of 3.4 kpc and an extinction A_{V}=5 mag.Comment: 14 pages, 7 figures. Accepted by Ap
    corecore