278 research outputs found
The Chemical Evolution of the Solar Neighbourhood: the Effect of Binaries
In this paper we compute the time evolution of the elements (4He, 12C, 14N,
16O, 20Ne, 24Mg, 28Si, 32S, 40Ca and 56Fe) and of the supernova rates in the
solar neighbourhood by means of a galactic chemical evolutionary code that
includes in detail the evolution of both single and binary stars. Special
attention is payed to the formation of black holes.
Our main conclusions: in order to predict the galactic time evolution of the
different types of supernovae, it is essential to compute in detail the
evolution of the binary population, the observed time evolution of carbon is
better reproduced by a galactic model where the effect is included of a
significant fraction of intermediate mass binaries, massive binary mass
exchange provides a possible solution for the production of primary nitrogen
during the very early phases of galactic evolution, chemical evolutionary
models with binaries or without binaries but with a detailed treatment of the
SN Ia progenitors predict very similar age-metallicity relations and very
similar G-dwarf distributions whereas the evolution of the yields as function
of time of the elements 4He, 16O, 20Ne, 24Mg, 28Si, 32S and 40Ca differ by no
more than a factor of two or three, the observed time evolution of oxygen is
best reproduced when most of the oxygen produced during core helium burning in
ALL massive stars serves to enrich the interstellar medium. This can be used as
indirect evidence that (massive) black hole formation in single stars and
binary components is always preceded by a supernova explosion.Comment: 59 page
Delay time distribution of type Ia supernovae: theory vs. observation
Two formation scenarios are investigated for type Ia supernovae in elliptical
galaxies: the single degenerate scenario (a white dwarf reaching the
Chandrasekhar limit through accretion of matter transferred from its companion
star in a binary) and the double degenerate scenario (the inspiraling and
merging of two white dwarfs in a binary as a result of the emission of
gravitational wave radiation). A population number synthesis code is used,
which includes the latest physical results in binary evolution and allows to
differentiate between certain physical scenarios (such as the description of
common envelope evolution) and evolutionary parameters (such as the mass
transfer efficiency during Roche lobe overflow). The thus obtained theoretical
distributions of type Ia supernova delay times are compared to those that are
observed, both in morphological shape and absolute number of events. The
critical influence of certain parameters on these distributions is used to
constrain their values. The single degenerate scenario alone is found to be
unable in reproducing the morphological shape of the observational delay time
distribution, while use of the double degenerate one (or a combination of both)
does result in fair agreement. Most double degenerate type Ia supernovae are
formed through a normal, quasi-conservative Roche lobe overflow followed by a
common envelope phase, not through two successive common envelope phases as is
often assumed. This may cast doubt on the determination of delay times by using
analytical formalisms, as is sometimes done in other studies. The theoretical
absolute number of events in old elliptical galaxies lies a factor of at least
three below the rates that are observed. While this may simply be the result of
observational uncertainties, a better treatment of the effects of rotation on
stellar structure could mitigate the discrepancy.Comment: 5 pages, 4 figures, to appear in proceedings of "Binary Star
Evolution: Mass Loss, Accretion, and Mergers
The dynamics of capital accumulation in the US: Simulations after Piketty
We calibrate a sequence of four nested models to study the dynamics of wealth accumulation. Individuals maximize a utility function whose arguments are consumption and investment. They desire to accumulate wealth for its own sake – this is not a life-cycle model. A competitive firm produces a single good from labor and capital; the rate of return to capital and the wage rate are market-clearing. The second model introduces political lobbying by the wealthy, whose purpose is to reduce the tax rate on capital income. The third model introduces differential rates of return to capitals of different sizes. The fourth model introduces inheritance and intergenerational mobility
The detection of ultra-relativistic electrons in low Earth orbit
Aims. To better understand the radiation environment in low Earth orbit
(LEO), the analysis of in-situ observations of a variety of particles, at
different atmospheric heights, and in a wide range of energies, is needed.
Methods. We present an analysis of energetic particles, indirectly detected by
the Large Yield RAdiometer (LYRA) instrument on board ESA's Project for
On-board Autonomy 2 (PROBA2) satellite as background signal. Combining
Energetic Particle Telescope (EPT) observations with LYRA data for an
overlapping period of time, we identified these particles as electrons with an
energy range of 2 to 8 MeV. Results. The observed events are strongly
correlated to geo-magnetic activity and appear even during modest disturbances.
They are also well confined geographically within the L=4-6 McIlwain zone,
which makes it possible to identify their source. Conclusions. Although highly
energetic particles are commonly perturbing data acquisition of space
instruments, we show in this work that ultra-relativistic electrons with
energies in the range of 2-8 MeV are detected only at high latitudes, while not
present in the South Atlantic Anomaly region.Comment: Topical Issue: Flares, CMEs and SEPs and their space weather impacts;
20 pages; 7 figures; Presented during 13th European Space Weather Week, 201
Irreversible thermodynamics of open chemical networks I: Emergent cycles and broken conservation laws
In this and a companion paper we outline a general framework for the
thermodynamic description of open chemical reaction networks, with special
regard to metabolic networks regulating cellular physiology and biochemical
functions. We first introduce closed networks "in a box", whose thermodynamics
is subjected to strict physical constraints: the mass-action law, elementarity
of processes, and detailed balance. We further digress on the role of solvents
and on the seemingly unacknowledged property of network independence of free
energy landscapes. We then open the system by assuming that the concentrations
of certain substrate species (the chemostats) are fixed, whether because
promptly regulated by the environment via contact with reservoirs, or because
nearly constant in a time window. As a result, the system is driven out of
equilibrium. A rich algebraic and topological structure ensues in the network
of internal species: Emergent irreversible cycles are associated to
nonvanishing affinities, whose symmetries are dictated by the breakage of
conservation laws. These central results are resumed in the relation between the number of fundamental affinities , that of broken
conservation laws and the number of chemostats . We decompose the
steady state entropy production rate in terms of fundamental fluxes and
affinities in the spirit of Schnakenberg's theory of network thermodynamics,
paving the way for the forthcoming treatment of the linear regime, of
efficiency and tight coupling, of free energy transduction and of thermodynamic
constraints for network reconstruction.Comment: 18 page
Search for an Near-IR Counterpart to the Cas A X-ray Point Source
We report deep near-infrared and optical observations of the X-ray point
source in the Cassiopeia A supernova remnant, CXO J232327.9+584842. We have
identified a J=21.4 +/- 0.3 mag and Ks=20.5 +/- 0.3 mag source within the
1-sigma error circle, but we believe this source is a foreground Pop II star
with Teff=2600-2800 K at a distance of ~2 kpc, which could not be the X-ray
point source. We do not detect any sources in this direction at the distance of
Cas A, and therefore place 3-sigma limits of R >~ 25 mag, F675W >~ 27.3 mag, J
>~ 22.5 mag and Ks >~ 21.2 mag (and roughly H >~ 20 mag) on emission from the
X-ray point source, corresponding to M_{R} >~ 8.2 mag, M_{F675W} >~ 10.7 mag,
M_{J} >~ 8.5 mag, M_{H} >~ 6.5 mag, and M_{Ks} >~ 8.0 mag, assuming a distance
of 3.4 kpc and an extinction A_{V}=5 mag.Comment: 14 pages, 7 figures. Accepted by Ap
- …
