28 research outputs found

    Data-efficient, Explainable and Safe Box Manipulation: Illustrating the Advantages of Physical Priors in Model-Predictive Control

    Full text link
    Model-based RL/control have gained significant traction in robotics. Yet, these approaches often remain data-inefficient and lack the explainability of hand-engineered solutions. This makes them difficult to debug/integrate in safety-critical settings. However, in many systems, prior knowledge of environment kinematics/dynamics is available. Incorporating such priors can help address the aforementioned problems by reducing problem complexity and the need for exploration, while also facilitating the expression of the decisions taken by the agent in terms of physically meaningful entities. Our aim with this paper is to illustrate and support this point of view via a case-study. We model a payload manipulation problem based on a real robotic system, and show that leveraging prior knowledge about the dynamics of the environment in an MPC framework can lead to improvements in explainability, safety and data-efficiency, leading to satisfying generalization properties with less data.Comment: accepted for publication by l4dc 2024, 12 pages (with references), 4 figures, 2 table

    Adaptive Asynchronous Control Using Meta-learned Neural Ordinary Differential Equations

    Full text link
    Model-based Reinforcement Learning and Control have demonstrated great potential in various sequential decision making problem domains, including in robotics settings. However, real-world robotics systems often present challenges that limit the applicability of those methods. In particular, we note two problems that jointly happen in many industrial systems: 1) Irregular/asynchronous observations and actions and 2) Dramatic changes in environment dynamics from an episode to another (e.g. varying payload inertial properties). We propose a general framework that overcomes those difficulties by meta-learning adaptive dynamics models for continuous-time prediction and control. The proposed approach is task-agnostic and can be adapted to new tasks in a straight-forward manner. We present evaluations in two different robot simulations and on a real industrial robot.Comment: 16 double column pages, 14 figures, 3 table

    Few-shot Quality-Diversity Optimization

    Full text link
    In the past few years, a considerable amount of research has been dedicated to the exploitation of previous learning experiences and the design of Few-shot and Meta Learning approaches, in problem domains ranging from Computer Vision to Reinforcement Learning based control. A notable exception, where to the best of our knowledge, little to no effort has been made in this direction is Quality-Diversity (QD) optimization. QD methods have been shown to be effective tools in dealing with deceptive minima and sparse rewards in Reinforcement Learning. However, they remain costly due to their reliance on inherently sample inefficient evolutionary processes. We show that, given examples from a task distribution, information about the paths taken by optimization in parameter space can be leveraged to build a prior population, which when used to initialize QD methods in unseen environments, allows for few-shot adaptation. Our proposed method does not require backpropagation. It is simple to implement and scale, and furthermore, it is agnostic to the underlying models that are being trained. Experiments carried in both sparse and dense reward settings using robotic manipulation and navigation benchmarks show that it considerably reduces the number of generations that are required for QD optimization in these environments.Comment: Accepted for publication in the IEEE Robotics and Automation Letters (RA-L) journa

    Behavioral Repertoire via Generative Adversarial Policy Networks

    Get PDF
    Learning algorithms are enabling robots to solve increasingly challenging real-world tasks. These approaches often rely on demonstrations and reproduce the behavior shown. Unexpected changes in the environment may require using different behaviors to achieve the same effect, for instance to reach and grasp an object in changing clutter. An emerging paradigm addressing this robustness issue is to learn a diverse set of successful behaviors for a given task, from which a robot can select the most suitable policy when faced with a new environment. In this paper, we explore a novel realization of this vision by learning a generative model over policies. Rather than learning a single policy, or a small fixed repertoire, our generative model for policies compactly encodes an unbounded number of policies and allows novel controller variants to be sampled. Leveraging our generative policy network, a robot can sample novel behaviors until it finds one that works for a new environment. We demonstrate this idea with an application of robust ball-throwing in the presence of obstacles. We show that this approach achieves a greater diversity of behaviors than an existing evolutionary approach, while maintaining good efficacy of sampled behaviors, allowing a Baxter robot to hit targets more often when ball throwing in the presence of obstacles.Comment: In Proceedings of 2019 Joint IEEE 9th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob), pages 320 - 32
    corecore