5 research outputs found
Kaluza-Klein Dark Matter, Electrons and Gamma Ray Telescopes
Kaluza-Klein dark matter particles can annihilate efficiently into
electron-positron pairs, providing a discrete feature (a sharp edge) in the
cosmic spectrum at an energy equal to the particle's mass (typically
several hundred GeV to one TeV). Although this feature is probably beyond the
reach of satellite or balloon-based cosmic ray experiments (those that
distinguish the charge and mass of the primary particle), gamma ray telescopes
may provide an alternative detection method. Designed to observe very
high-energy gamma-rays, ACTs also observe the diffuse flux of electron-induced
electromagnetic showers. The GLAST satellite, designed for gamma ray astronomy,
will also observe any high energy showers (several hundred GeV and above) in
its calorimeter. We show that high-significance detections of an
electron-positron feature from Kaluza-Klein dark matter annihilations are
possible with GLAST, and also with ACTs such as HESS, VERITAS or MAGIC.Comment: 10 pages, 2 figure
Low energy antideuterons: shedding light on dark matter
Low energy antideuterons suffer a very low secondary and tertiary
astrophysical background, while they can be abundantly synthesized in dark
matter pair annihilations, therefore providing a privileged indirect dark
matter detection technique. The recent publication of the first upper limit on
the low energy antideuteron flux by the BESS collaboration, a new evaluation of
the standard astrophysical background, and remarkable progresses in the
development of a dedicated experiment, GAPS, motivate a new and accurate
analysis of the antideuteron flux expected in particle dark matter models. To
this extent, we consider here supersymmetric, universal extra-dimensions (UED)
Kaluza-Klein and warped extra-dimensional dark matter models, and assess both
the prospects for antideuteron detection as well as the various related sources
of uncertainties. The GAPS experiment, even in a preliminary balloon-borne
setup, will explore many supersymmetric configurations, and, eventually, in its
final space-borne configuration, will be sensitive to primary antideuterons
over the whole cosmologically allowed UED parameter space, providing a search
technique which is highly complementary with other direct and indirect dark
matter detection experiments.Comment: 26 pages, 7 figures; version to appear in JCA
Determining Supersymmetric Parameters With Dark Matter Experiments
In this article, we explore the ability of direct and indirect dark matter
experiments to not only detect neutralino dark matter, but to constrain and
measure the parameters of supersymmetry. In particular, we explore the
relationship between the phenomenological quantities relevant to dark matter
experiments, such as the neutralino annihilation and elastic scattering cross
sections, and the underlying characteristics of the supersymmetric model, such
as the values of mu (and the composition of the lightest neutralino), m_A and
tan beta. We explore a broad range of supersymmetric models and then focus on a
smaller set of benchmark models. We find that by combining astrophysical
observations with collider measurements, mu can often be constrained far more
tightly than it can be from LHC data alone. In models in the A-funnel region of
parameter space, we find that dark matter experiments can potentially determine
m_A to roughly +/-100 GeV, even when heavy neutral MSSM Higgs bosons (A, H_1)
cannot be observed at the LHC. The information provided by astrophysical
experiments is often highly complementary to the information most easily
ascertained at colliders.Comment: 46 pages, 76 figure