39 research outputs found
Simple models suffice for the single dot quantum shuttle
A quantum shuttle is an archetypical nanoelectromechanical device, where the
mechanical degree of freedom is quantized. Using a full-scale numerical
solution of the generalized master equation describing the shuttle, we have
recently shown [Novotn\'{y} {\it et al.}, Phys. Rev. Lett. {\bf 92}, 248302
(2004)] that for certain limits of the shuttle parameters one can distinguish
three distinct charge transport mechanisms: (i) an incoherent tunneling regime,
(ii) a shuttling regime, where the charge transport is synchronous with the
mechanical motion, and (iii) a coexistence regime, where the device switches
between the tunneling and shuttling regimes. While a study of the cross-over
between these three regimes requires the full numerics, we show here that by
identifying the appropriate time-scales it is possible to derive vastly simpler
equations for each of the three regimes. The simplified equations allow a clear
physical interpretation, are easily solved, and are in good agreement with the
full numerics in their respective domains of validity.Comment: 23 pages, 14 figures, invited paper for the Focus issue of the New
Journal of Physics on Nano-electromechanical system
Shuttle instabilities: semiclassical phase analysis
We present a semiclassical analysis of the instability of an electron shuttle
composed of three quantum dots: two are fixed and coupled via leads to electron
resevoirs at different chemical potentials, while the central dot is mounted on
a classical harmonic oscillator. The semiclassical analysis, which is valid if
the central dot oscillation amplitude is larger than the quantum mechanical
zero point motion, can be used to gain additional insight about the
relationship of resonances and instabilities of the device.Comment: 4 pages, 3 figures, presented at EP2DS-15, Nara, July 200
Quantum pumping in deformable quantum dots
The charge current pumped adiabatically through a deformable quantum dot is
studied within the Green's function approach. Differently from the
non-deformable case, the current shows an undefined parity with respect to the
pumping phase \phi. The unconventional current-phase relation, analyzed in the
weak pumping regime, is due to a dynamical phase shift \phi_D caused by the
elastic deformations of the central region (classical phonons). The role of the
quality factor Q of the oscillator, the effects induced by a mechanical
resonance and the implications for current experiments on molecular systems are
also discussed
Current and current fluctuations in quantum shuttles
We review the properties of electron shuttles, i.e. nanoelectromechanical
devices that transport electrons one-by-one by utilizing a combination of
electronic and mechanical degrees of freedom. We focus on the extreme quantum
limit, where the mechanical motion is quantized. We introduce the main
theoretical tools needed for the analysis, e.g. generalized master equations
and Wigner functions, and we outline the methods how the resulting large
numerical problems can be handled. Illustrative results are given for current,
noise, and full counting statistics for a number of model systems. Throughout
the review we focus on the physics behind the various approximations, and some
simple examples are given to illustrate the theoretical concepts. We also
comment on the experimental situation.Comment: Minireview; technical level aimed at general audience, based on an
invited talk at "Transport Phenomena in Micro and Nanodevices", October 17-21
Kona, Hawai
Quantum theory of shuttling instability in a movable quantum dot array
We study the shuttling instability in an array of three quantum dots the
central one of which is movable. We extend the results by Armour and MacKinnon
on this problem to a broader parameter regime. The results obtained by an
efficient numerical method are interpreted directly using the Wigner
distributions. We emphasize that the instability should be viewed as a
crossover phenomenon rather than a clear-cut transition.Comment: 4 pages, 2 figures, presented at HCIS-13, Modena, July 200
Thermally induced subgap features in the cotunneling spectroscopy of a carbon nanotube
We report on nonlinear cotunneling spectroscopy of a carbon nanotube quantum
dot coupled to Nb superconducting contacts. Our measurements show rich subgap
features in the stability diagram which become more pronounced as the
temperature is increased. Applying a transport theory based on the
Liouville-von Neumann equation for the density matrix, we show that the
transport properties can be attributed to processes involving sequential as
well as elastic and inelastic cotunneling of quasiparticles thermally excited
across the gap. In particular, we predict thermal replicas of the elastic and
inelastic cotunneling peaks, in agreement with our experimental results.Comment: 21 pages, 9 figures, submitted to New Journal of Physic
Sub-gap spectroscopy of thermally excited quasiparticles in a Nb contacted carbon nanotube quantum dot
We present electronic transport measurements of a single wall carbon nanotube
quantum dot coupled to Nb superconducting contacts. For temperatures comparable
to the superconducting gap peculiar transport features are observed inside the
Coulomb blockade and superconducting energy gap regions. The observed
temperature dependence can be explained in terms of sequential tunneling
processes involving thermally excited quasiparticles. In particular, these new
channels give rise to two unusual conductance peaks at zero bias in the
vicinity of the charge degeneracy point and allow to determine the degeneracy
of the ground states involved in transport. The measurements are in good
agreement with model calculations.Comment: 5 pages, 4 figure
Virtual Photon Contribution to Frictional Drag in double-layer Devices
The first order contribution to frictional drag in bi-layered fermion gas is
examined. We discuss the relevance of single photon exchange in the evaluation
of transresistance, which is usually explained by second order effects such as
Coulomb and phonon drag. Since the effective e.m. interaction is unscreened, in
the d.c. limit we obtain a finite (and large) contribution to
transconductivity.Comment: 13 pages, 1 figur
Full counting statistics of nano-electromechanical systems
We develop a theory for the full counting statistics (FCS) for a class of
nanoelectromechanical systems (NEMS), describable by a Markovian generalized
master equation. The theory is applied to two specific examples of current
interest: vibrating C60 molecules and quantum shuttles. We report a numerical
evaluation of the first three cumulants for the C60-setup; for the quantum
shuttle we use the third cumulant to substantiate that the giant enhancement in
noise observed at the shuttling transition is due to a slow switching between
two competing conduction channels. Especially the last example illustrates the
power of the FCS.Comment: 7 pages, 3 figures; minor changes - final version as published in
Europhys. Let
Current without bias and diode effect in shuttling transport of nanoshafts
A row of parallely ordered and coupled molecular nanoshafts is shown to
develop a shuttling transport of charges at finite temperature. The appearance
of a cu rrent without applying an external bias voltage is reported as well as
a natura l diode effect allowing unidirectional charge transport along one
field directi on while blocking the opposite direction. The zero-bias voltage
current appears above a threshold of initial thermal and/or dislocation energy