213 research outputs found

    The Expression and Localization of N-Myc Downstream-Regulated Gene 1 in Human Trophoblasts

    Get PDF
    The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1's subcellular distribution. © 2013 Shi et al

    Issues in the incorporation of economic perspectives and evidence into Cochrane reviews

    Get PDF
    Methods for systematic reviews of the effects of health interventions have focused mainly on addressing the question of 'What works?' or 'Is this intervention effective in achieving one or more specific outcomes?' Addressing the question 'Is it worth it given the resources available?' has received less attention. This latter question can be addressed by applying an economic lens to the systematic review process.This paper reflects on the value and desire for the consideration by end users for coverage of an economic perspective in a Cochrane review and outlines two potential approaches and future directions

    Comparison of balance assessment modalities in emergency department elders: a pilot cross-sectional observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More than one-third of US adults 65 and over fall every year. These falls may cause serious injury including substantial long-term morbidity (due declines in activities of daily living) and death. The emergency department (ED) visit represents an opportunity for identifying high risk elders and potentially instituting falls-related interventions. The unique characteristic of the ED environment and patient population necessitate that risk-assessment modalities be validated in this specific setting. In order to better identify elders at risk of falls, we examined the relationship between patient-provided history of falling and two testing modalities (a balance plate system and the timed up-and-go [TUG] test) in elder emergency department (ED) patients.</p> <p>Methods</p> <p>We conducted a cross-sectional observational study of patients ≥ 60 years old being discharged from the ED. Patient history of falls in the past week, month, 6 months, and year was obtained. Balance plate center of pressure excursion (COP) measurements and TUG testing times were recorded. COP was recorded under four conditions: normal stability eyes open (NSEO) and closed (NSEC), and perturbed stability eyes open and closed. Correlation between TUG and COP scores was measured. Univariate logistic regression was used to identify the relationship between patient-provided falls history and the two testing modalities. Proportions, likelihood ratios, and receiver-operating-characteristic (ROC) curves for prediction of previous falls were reported.</p> <p>Results</p> <p>Fifty-three subjects were enrolled, 11% had fallen in the previous week and 42% in the previous year. There was no correlation between TUG and any balance plate measurements. In logistic regression, neither testing modality was associated with prior history of falls (<it>p </it>> 0.05 for all time periods). Balance plate NSEO and NSEC testing cutoffs could be identified which were 83% sensitive and had a negative likelihood ratio (LR-) of 0.3 for falls in the past week. TUG testing was not useful for falls in the past week, but performed best for more distant falls in the past month, 6 months, or year. TUG cutoffs with sensitivity over 80% and LR(-) of 0.17-0.32 could be identified for these time periods.</p> <p>Conclusion</p> <p>Over 40% of community-dwelling elder ED patients report a fall within the past year. Balance plate and TUG testing were feasibly conducted in an ED setting. There is no relationship between scores on balance plate and TUG testing in these patients. In regression analysis, neither modality was significantly associated with patient provided history of falls. These modalities should not be adopted for screening purposes in elders in the ED setting without validation in future studies or as part of multi-factorial risk assessment.</p

    Baseline hospital performance and the impact of medical emergency teams: Modelling vs. conventional subgroup analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To compare two approaches to the statistical analysis of the relationship between the baseline incidence of adverse events and the effect of medical emergency teams (METs).</p> <p>Methods</p> <p>Using data from a cluster randomized controlled trial (the MERIT study), we analysed the relationship between the baseline incidence of adverse events and its change from baseline to the MET activation phase using quadratic modelling techniques. We compared the findings with those obtained with conventional subgroup analysis.</p> <p>Results</p> <p>Using linear and quadratic modelling techniques, we found that each unit increase in the baseline incidence of adverse events in MET hospitals was associated with a 0.59 unit subsequent reduction in adverse events (95%CI: 0.33 to 0.86) after MET implementation and activation. This applied to cardiac arrests (0.74; 95%CI: 0.52 to 0.95), unplanned ICU admissions (0.56; 95%CI: 0.26 to 0.85) and unexpected deaths (0.68; 95%CI: 0.45 to 0.90). Control hospitals showed a similar reduction only for cardiac arrests (0.95; 95%CI: 0.56 to 1.32). Comparison using conventional subgroup analysis, on the other hand, detected no significant difference between MET and control hospitals.</p> <p>Conclusions</p> <p>Our study showed that, in the MERIT study, when there was dependence of treatment effect on baseline performance, an approach based on regression modelling helped illustrate the nature and magnitude of such dependence while sub-group analysis did not. The ability to assess the nature and magnitude of such dependence may have policy implications. Regression technique may thus prove useful in analysing data when there is a conditional treatment effect.</p

    High-resolution structure determination of the CylR2 homodimer using paramagnetic relaxation enhancement and structure-based prediction of molecular alignment

    Get PDF
    Structure determination of homooligomeric proteins by NMR spectroscopy is difficult due to the lack of chemical shift perturbation data, which is very effective in restricting the binding interface in heterooligomeric systems, and the difficulty of obtaining a sufficient number of intermonomer distance restraints. Here we solved the high-resolution solution structure of the 15.4 kDa homodimer CylR2, the regulator of cytolysin production from Enterococcus faecalis, which deviates by 1.1 Å from the previously determined X-ray structure. We studied the influence of different experimental information such as long-range distances derived from paramagnetic relaxation enhancement, residual dipolar couplings, symmetry restraints and intermonomer Nuclear Overhauser Effect restraints on the accuracy of the derived structure. In addition, we show that it is useful to combine experimental information with methods of ab initio docking when the available experimental data are not sufficient to obtain convergence to the correct homodimeric structure. In particular, intermonomer distances may not be required when residual dipolar couplings are compared to values predicted on the basis of the charge distribution and the shape of ab initio docking solutions

    Analysis of Endocytic Pathways in Drosophila Cells Reveals a Conserved Role for GBF1 in Internalization via GEECs

    Get PDF
    In mammalian cells, endocytosis of the fluid phase and glycosylphosphatidylinositol-anchored proteins (GPI-APs) forms GEECs (GPI-AP enriched early endosomal compartments) via an Arf1- and Cdc42-mediated, dynamin independent mechanism. Here we use four different fluorescently labeled probes and several markers in combination with quantitative kinetic assays, RNA interference and high resolution imaging to delineate major endocytic routes in Drosophila cultured cells. We find that the hallmarks of the pinocytic GEEC pathway are conserved in Drosophila and identify garz, the fly ortholog of the GTP exchange factor GBF1, as a novel component of this pathway. Live confocal and TIRF imaging reveals that a fraction of GBF1 GFP dynamically associates with ABD RFP (a sensor for activated Arf1 present on nascent pinosomes). Correspondingly, a GTP exchange mutant of GBF1 has altered ABD RFP localization in the evanescent field and is impaired in fluid phase uptake. Furthermore, GBF1 activation is required for the GEEC pathway even in the presence of Brefeldin A, implying that, like Arf1, it has a role in endocytosis that is separable from its role in secretion

    Automation of a problem list using natural language processing

    Get PDF
    BACKGROUND: The medical problem list is an important part of the electronic medical record in development in our institution. To serve the functions it is designed for, the problem list has to be as accurate and timely as possible. However, the current problem list is usually incomplete and inaccurate, and is often totally unused. To alleviate this issue, we are building an environment where the problem list can be easily and effectively maintained. METHODS: For this project, 80 medical problems were selected for their frequency of use in our future clinical field of evaluation (cardiovascular). We have developed an Automated Problem List system composed of two main components: a background and a foreground application. The background application uses Natural Language Processing (NLP) to harvest potential problem list entries from the list of 80 targeted problems detected in the multiple free-text electronic documents available in our electronic medical record. These proposed medical problems drive the foreground application designed for management of the problem list. Within this application, the extracted problems are proposed to the physicians for addition to the official problem list. RESULTS: The set of 80 targeted medical problems selected for this project covered about 5% of all possible diagnoses coded in ICD-9-CM in our study population (cardiovascular adult inpatients), but about 64% of all instances of these coded diagnoses. The system contains algorithms to detect first document sections, then sentences within these sections, and finally potential problems within the sentences. The initial evaluation of the section and sentence detection algorithms demonstrated a sensitivity and positive predictive value of 100% when detecting sections, and a sensitivity of 89% and a positive predictive value of 94% when detecting sentences. CONCLUSION: The global aim of our project is to automate the process of creating and maintaining a problem list for hospitalized patients and thereby help to guarantee the timeliness, accuracy and completeness of this information

    Mapping the Relationship Among Political Ideology, CSR Mindset, and CSR Strategy: A Contingency Perspective Applied to Chinese Managers

    Get PDF
    The literature on antecedents of corporate social responsibility (CSR) strategies of firms has been predominately content driven. Informed by the managerial sense-making process perspective, we develop a contingency theoretical framework explaining how political ideology of managers affects the choice of CSR strategy for their firms through their CSR mindset. We also explain to what extent the outcome of this process is shaped by the firm’s internal institutional arrangements and external factors impacting on the firm. We develop and test several hypotheses using data collected from 129 Chinese managers. The results show that managers with a stronger socialist ideology are likely to develop a mindset favouring CSR, which induces the adoption of a proactive CSR strategy. The CSR mindset mediates the link between socialist ideology and CSR strategy. The strength of the relationship between the CSR mindset and the choice of CSR strategy is moderated by customer response to CSR, industry competition, the role of government, and CSR-related managerial incentives

    Intermediate filament cytoskeleton of the liver in health and disease

    Get PDF
    Intermediate filaments (IFs) represent the largest cytoskeletal gene family comprising ~70 genes expressed in tissue specific manner. In addition to scaffolding function, they form complex signaling platforms and interact with various kinases, adaptor, and apoptotic proteins. IFs are established cytoprotectants and IF variants are associated with >30 human diseases. Furthermore, IF-containing inclusion bodies are characteristic features of several neurodegenerative, muscular, and other disorders. Acidic (type I) and basic keratins (type II) build obligatory type I and type II heteropolymers and are expressed in epithelial cells. Adult hepatocytes contain K8 and K18 as their only cytoplasmic IF pair, whereas cholangiocytes express K7 and K19 in addition. K8/K18-deficient animals exhibit a marked susceptibility to various toxic agents and Fas-induced apoptosis. In humans, K8/K18 variants predispose to development of end-stage liver disease and acute liver failure (ALF). K8/K18 variants also associate with development of liver fibrosis in patients with chronic hepatitis C. Mallory-Denk bodies (MDBs) are protein aggregates consisting of ubiquitinated K8/K18, chaperones and sequestosome1/p62 (p62) as their major constituents. MDBs are found in various liver diseases including alcoholic and non-alcoholic steatohepatitis and can be formed in mice by feeding hepatotoxic substances griseofulvin and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC). MDBs also arise in cell culture after transfection with K8/K18, ubiquitin, and p62. Major factors that determine MDB formation in vivo are the type of stress (with oxidative stress as a major player), the extent of stress-induced protein misfolding and resulting chaperone, proteasome and autophagy overload, keratin 8 excess, transglutaminase activation with transamidation of keratin 8 and p62 upregulation
    corecore