22 research outputs found
Genetic characterisation of Norovirus strains in outpatient children from rural communities of Vhembe district / South Africa, 2014-2015
Background: Norovirus (NoV) is now the 24 most common causes of both outbreaks and sporadic non-bacterial gastroenteritis worldwide. However, data supporting the role of NoV in diarrheal disease are limited in the African continent. Objectives: This study investigates the distribution of NoV genotypes circulating in outpatient children from rural communities of Vhembe district / South Africa. Study design: Stool specimens were collected from children under five years of age with diarrhea, and controls without diarrhea, between July 2014 and April 2015. NoV positive samples, detected previously by Realtime PCR, were analysed using conventional RT-PCR targeting the partial capsid and polymerase genes. Nucleotide sequencing methods were performed to genotype the strains. Results: The sequence analyses demonstrated multiple NoV genotypes including GI.4 (13.8%), GI.5 (6.9%), GII.14 (6.9%), GII.4 (31%), GII.6 (3.4%), GII.P15 (3.4%), GII.P21 (3.4%) and GII.Pe (31%). The most prevalent NoV genotypes were GII.4 Sydney 2012 variants (n=7) among the capsid genotypes, GII.Pe (n=9) among the polymerase genotypes and GII.Pe/GII.4 Sydney 2012 (n=8) putative recombinants among the RdRp/Capsid genotypes. Two unassigned GII.4 variants were found. Conclusions: The findings highlighted NoV genetic diversity and revealed continuous pandemic spread and predominance of GII.Pe/GII.4 Sydney 2012, indicative of increased NoV activity. An unusual RdRp genotype GII.P15 and two unassigned GII.4 variants were also identified from rural settings of the Vhembe district/South Africa. NoV surveillance is warranted to help to inform investigations into NoV evolution and disease burden, and to support on-going vaccine development programmes
Histo-Blood Group Antigens Act as Attachment Factors of Rabbit Hemorrhagic Disease Virus Infection in a Virus Strain-Dependent Manner
Rabbit Hemorrhagic disease virus (RHDV), a calicivirus of the Lagovirus genus, and responsible for rabbit hemorrhagic disease (RHD), kills rabbits between 48 to 72 hours post infection with mortality rates as high as 50–90%. Caliciviruses, including noroviruses and RHDV, have been shown to bind histo-blood group antigens (HBGA) and human non-secretor individuals lacking ABH antigens in epithelia have been found to be resistant to norovirus infection. RHDV virus-like particles have previously been shown to bind the H type 2 and A antigens. In this study we present a comprehensive assessment of the strain-specific binding patterns of different RHDV isolates to HBGAs. We characterized the HBGA expression in the duodenum of wild and domestic rabbits by mass spectrometry and relative quantification of A, B and H type 2 expression. A detailed binding analysis of a range of RHDV strains, to synthetic sugars and human red blood cells, as well as to rabbit duodenum, a likely gastrointestinal site for viral entrance was performed. Enzymatic cleavage of HBGA epitopes confirmed binding specificity. Binding was observed to blood group B, A and H type 2 epitopes in a strain-dependent manner with slight differences in specificity for A, B or H epitopes allowing RHDV strains to preferentially recognize different subgroups of animals. Strains related to the earliest described RHDV outbreak were not able to bind A, whereas all other genotypes have acquired A binding. In an experimental infection study, rabbits lacking the correct HBGA ligands were resistant to lethal RHDV infection at low challenge doses. Similarly, survivors of outbreaks in wild populations showed increased frequency of weak binding phenotypes, indicating selection for host resistance depending on the strain circulating in the population. HBGAs thus act as attachment factors facilitating infection, while their polymorphism of expression could contribute to generate genetic resistance to RHDV at the population level
Coronaviruses: An RNA proofreading machine regulates replication fidelity and diversity
In order to survive and propagate, RNA viruses must achieve a balance between the capacity for adaptation to new environmental conditions or host cells with the need to maintain an intact and replication competent genome. Several virus families in the order Nidovirales, such as the coronaviruses (CoVs) must achieve these objectives with the largest and most complex replicating RNA genomes known, up to 32 kb of positive-sense RNA. The CoVs encode sixteen nonstructural proteins (nsp 1–16) with known or predicted RNA synthesis and modification activities, and it has been proposed that they are also responsible for the evolution of large genomes. The CoVs, including murine hepatitis virus (MHV) and SARS-CoV, encode a 3′-to-5′ exoribonuclease activity (ExoN) in nsp14. Genetic inactivation of ExoN activity in engineered SARS-CoV and MHV genomes by alanine substitution at conserved DE-D-D active site residues results in viable mutants that demonstrate 15- to 20-fold increases in mutation rates, up to 18 times greater than those tolerated for fidelity mutants of other RNA viruses. Thus nsp14-ExoN is essential for replication fidelity, and likely serves either as a direct mediator or regulator of a more complex RNA proofreading machine, a process previously unprecedented in RNA virus biology. Elucidation of the mechanisms of nsp14-mediated proofreading will have major implications for our understanding of the evolution of RNA viruses, and also will provide a robust model to investigate the balance between fidelity, diversity and pathogenesis. The discovery of a protein distinct from a viral RdRp that regulates replication fidelity also raises the possibility that RNA genome replication fidelity may be adaptable to differing replication environments and selective pressures, rather than being a fixed determinant
Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014
Norovirus genogroup II genotype 4 (GII.4) has been the predominant cause of viral gastroenteritis since 1996. Here we show that during the winter of 2014–2015, an emergent variant of a previously rare norovirus GII.17 genotype, Kawasaki 2014, predominated in Hong Kong and outcompeted contemporary GII.4 Sydney 2012 in hospitalized cases. GII.17 cases were significantly older than GII.4 cases. Root-to-tip and Bayesian BEAST analyses estimate GII.17 viral protein 1 (VP1) evolves one order of magnitude faster than GII.4 VP1. Residue substitutions and insertion occur in four of five inferred antigenic epitopes, suggesting immune evasion. Sequential GII.4-GII.17 infections are noted, implicating a lack of cross-protection. Virus bound to saliva of secretor histo-blood groups A, B and O, indicating broad susceptibility. This fast-evolving, broadly recognizing and probably immune-escaped emergent GII.17 variant causes severe gastroenteritis and hospitalization across all age groups, including populations who were previously less vulnerable to GII.4 variants; therefore, the global spread of GII.17 Kawasaki 2014 needs to be monitored