61 research outputs found

    RBR E3 ubiquitin ligases: new structures, new insights, new questions

    Get PDF
    The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology. INTRODUCTIO

    New Discoveries on Protein Recruitment and Regulation during the Early Stages of the DNA Damage Response Pathways

    Get PDF
    Maintaining genomic stability and properly repairing damaged DNA is essential to staying healthy and preserving cellular homeostasis. The five major pathways involved in repairing eukaryotic DNA include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), and homologous recombination (HR). When these pathways do not properly repair damaged DNA, genomic stability is compromised and can contribute to diseases such as cancer. It is essential that the causes of DNA damage and the consequent repair pathways are fully understood, yet the initial recruitment and regulation of DNA damage response proteins remains unclear. In this review, the causes of DNA damage, the various mechanisms of DNA damage repair, and the current research regarding the early steps of each major pathway were investigated. © 2024 by the authors

    New Discoveries on the Roles of “Other” HECT E3 Ubiquitin Ligases in Disease Development

    Get PDF
    HECT E3 ubiquitin ligases selectively recognize, bind, and ubiquitylate their substrate proteins to target them for 26S proteasomal degradation. There is increasing evidence that HECT E3 ubiquitin ligase dysfunction due to misfolding and/or the gene encoding the protein being mutated is responsible for the development of different diseases. Apart from the more prominent and well-characterized E6AP and members of the NEDD4 family, new studies have begun to reveal how other members of the HECT E3 ubiquitin ligase family function as well as their links to disease and developmental disorders. This chapter provides a comprehensive discussion on the more mysterious members of the HECT E3 ubiquitin ligase family and how they control intracellular processes. Specifically, AREL1, HACE1, HECTD1, HECTD4, G2E3, and TRIP12 will be examined as these enzymes have recently been identified as contributors to disease development

    Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis

    Get PDF
    The PARK2 gene is mutated in 50% of autosomal recessive juvenile parkinsonism (ARJP) cases. It encodes parkin, an E3 ubiquitin ligase of the RBR family. Parkin exists in an autoinhibited state that is activated by phosphorylation of its N‐terminal ubiquitin‐like (Ubl) domain and binding of phosphoubiquitin. We describe the 1.8 Å crystal structure of human parkin in its fully inhibited state and identify the key interfaces to maintain parkin inhibition. We identify the phosphoubiquitin‐binding interface, provide a model for the phosphoubiquitin–parkin complex and show how phosphorylation of the Ubl domain primes parkin for optimal phosphoubiquitin binding. Furthermore, we demonstrate that the addition of phosphoubiquitin leads to displacement of the Ubl domain through loss of structure, unveiling a ubiquitin‐binding site used by the E2~Ub conjugate, thus leading to active parkin. We find the role of the Ubl domain is to prevent parkin activity in the absence of the phosphorylation signals, and propose a model for parkin inhibition, optimization for phosphoubiquitin recruitment, release of inhibition by the Ubl domain and engagement with an E2~Ub conjugate. Taken together, this model provides a mechanistic framework for activating parkin

    Risk factors associated with post-acute sequelae of SARS-CoV-2: an N3C and NIH RECOVER study

    Get PDF
    Background More than one-third of individuals experience post-acute sequelae of SARS-CoV-2 infection (PASC, which includes long-COVID). The objective is to identify risk factors associated with PASC/long-COVID diagnosis. Methods This was a retrospective case–control study including 31 health systems in the United States from the National COVID Cohort Collaborative (N3C). 8,325 individuals with PASC (defined by the presence of the International Classification of Diseases, version 10 code U09.9 or a long-COVID clinic visit) matched to 41,625 controls within the same health system and COVID index date within ± 45 days of the corresponding case's earliest COVID index date. Measurements of risk factors included demographics, comorbidities, treatment and acute characteristics related to COVID-19. Multivariable logistic regression, random forest, and XGBoost were used to determine the associations between risk factors and PASC. Results Among 8,325 individuals with PASC, the majority were > 50 years of age (56.6%), female (62.8%), and non-Hispanic White (68.6%). In logistic regression, middle-age categories (40 to 69 years; OR ranging from 2.32 to 2.58), female sex (OR 1.4, 95% CI 1.33–1.48), hospitalization associated with COVID-19 (OR 3.8, 95% CI 3.05–4.73), long (8–30 days, OR 1.69, 95% CI 1.31–2.17) or extended hospital stay (30 + days, OR 3.38, 95% CI 2.45–4.67), receipt of mechanical ventilation (OR 1.44, 95% CI 1.18–1.74), and several comorbidities including depression (OR 1.50, 95% CI 1.40–1.60), chronic lung disease (OR 1.63, 95% CI 1.53–1.74), and obesity (OR 1.23, 95% CI 1.16–1.3) were associated with increased likelihood of PASC diagnosis or care at a long-COVID clinic. Characteristics associated with a lower likelihood of PASC diagnosis or care at a long-COVID clinic included younger age (18 to 29 years), male sex, non-Hispanic Black race, and comorbidities such as substance abuse, cardiomyopathy, psychosis, and dementia. More doctors per capita in the county of residence was associated with an increased likelihood of PASC diagnosis or care at a long-COVID clinic. Our findings were consistent in sensitivity analyses using a variety of analytic techniques and approaches to select controls. Conclusions This national study identified important risk factors for PASC diagnosis such as middle age, severe COVID-19 disease, and specific comorbidities. Further clinical and epidemiological research is needed to better understand underlying mechanisms and the potential role of vaccines and therapeutics in altering PASC course. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-023-16916-w

    BCMB 271--Biochemistry I

    No full text

    Protein Chemistry

    No full text

    Research Methods: LEEPing into a Science Career

    No full text

    BCMB 275--Protein Chemistry

    No full text

    Structural Insights into Ankyrin Repeat-Containing Proteins and Their Influence in Ubiquitylation

    No full text
    Ankyrin repeat (AR) domains are considered the most abundant repeat motif found in eukaryotic proteins. AR domains are predominantly known to mediate specific protein–protein interactions (PPIs) without necessarily recognizing specific primary sequences, nor requiring strict conformity within its own primary sequence. This promiscuity allows for one AR domain to recognize and bind to a variety of intracellular substrates, suggesting that AR-containing proteins may be involved in a wide array of functions. Many AR-containing proteins serve a critical role in biological processes including the ubiquitylation signaling pathway (USP). There is also strong evidence that AR-containing protein malfunction are associated with several neurological diseases and disorders. In this review, the structure and mechanism of key AR-containing proteins are discussed to suggest and/or identify how each protein utilizes their AR domains to support ubiquitylation and the cascading pathways that follow upon substrate modification
    corecore