57 research outputs found

    Erythroid mRNA processing: a splice of life .

    No full text
    In this issue of Blood, Cheng and colleagues report first on intriguingly complex pre–messenger RNA (pre-mRNA) global alternate splicing (AS) events that occur in primary erythroblasts. Predominant regulatory roles then are implicated for a Muscleblind-like (MBNL) splicing factor, Mbnl1 (an AS regulator in pluripotent embryonic stem [ES] cells and myoblasts), and for nuclear distribution element like-1 (Ndel1) as a Mbnl1 target. Via loss-of-function (LOF) analyses, Mbnl1 and Ndel1 further are evidenced to support erythroblast development.(1

    Micro-mismanaging sickle cell stress.

    No full text

    Emerging EPO and EPO receptor regulators and signal transducers.

    No full text
    As essential mediators of red cell production, erythropoietin (EPO) and its cell surface receptor (EPO receptor [EPOR]) have been intensely studied. Early investigations defined basic mechanisms for hypoxia-inducible factor induction of EPO expression, and within erythroid progenitors EPOR engagement of canonical Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5), rat sarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (RAS/MEK/ERK), and phosphatidylinositol 3-kinase (PI3K) pathways. Contemporary genetic, bioinformatic, and proteomic approaches continue to uncover new clinically relevant modulators of EPO and EPOR expression, and EPO\u27s biological effects. This Spotlight review highlights such factors and their emerging roles during erythropoiesis and anemia

    Core erythropoietin receptor signals for late erythroblast development

    No full text
    Critical signals for erythroblast formation are transduced by activated, tyrosine-phosphorylated erythropoietin receptor (EpoR) complexes. Nonetheless, steady-state erythropoiesis is supported effectively by EpoR alleles that are deficient in cytoplasmic phosphotyrosine sites. To better define core EpoR action mechanisms, signaling capacities of minimal PY-null (EpoR-HM) and PY343-retaining (EpoR-H) alleles were analyzed for the first time in bone marrow–derived erythroblasts. Jak2 activation via each allele was comparable. Stat5 (and several Stat5-response genes) were induced via EpoR-H but not via EpoR-HM. Stat1 and Stat3 activation was nominal for all EpoR forms. For both EpoR-HM and EpoR-H, Akt and p70S6-kinase activation was decreased multifold, and JNK activation was minimal. ERKs, however, were hyperactivated uniquely via EpoR-HM. In vivo, Epo expression in EpoR-HM mice was elevated, while Epo-induced reticulocyte production was diminished. In vitro, EpoR-HM erythroblast maturation also was attenuated (based on DNA content, forward-angle light scatter, and hemoglobinization). These EpoR-HM–specific defects were corrected not only upon PY343 site restoration in EpoR-H, but also upon MEK1,2 inhibition. Core EpoR PY site-independent signals for erythroblast formation therefore appear to be Stat5, Stat1, Stat3, p70S6-kinase, and JNK independent, but ERK dependent. Wild-type signaling capacities, however, depend further upon signals provided via an EpoR/PY343/Stat5 axis

    Death associated protein kinase 2 is expressed in cortical interstitial cells of the mouse kidney.

    No full text
    BACKGROUND: DAPK2 is a pro-apoptotic protein kinase that associates with TGFβ receptors. The homolog DAPK1 has been shown to mediate apoptosis in kidney injury. Expression databases indicate that DAPK2 is expressed in the kidney, and in this work we investigate the localization of renal DAPK2 expression and its role in the kidney. RESULTS: Immunostaining demonstrates DAPK2 expression in interstitial cells of the renal cortex including PDGFRβ-positive pericytes and the CD73-positive erythropoietin-expressing fibroblast population. Tubulointerstitial fibrosis in experimental CKD arises directly from resident interstitial cells, and we therefore evaluated the expression of DAPK2 in the expanded interstitium of mice with kidney disease induced by chronic cisplatin administration. Expanded renal interstitium in these animals was negative for DAPK2 expression, but healthy areas of the kidney in which the tubular interstitium had not expanded expressed DAPK2 at levels similar to the uninjured control. Dapk2 null mice were generated to evaluate if DAPK2 is required for formation of the kidney, or its maintenance in the adult. Kidneys of Dapk2 null mice did not show overt malformations or age-related degeneration, but did show a slight increase in the number of interstitial fibroblasts. Differences were seen between Dapk2 null mice and wild type controls in the response to tubulointerstitial fibrosis caused by chronic cisplatin administration. Although mutant and wild type mice displayed comparable levels of alpha smooth muscle actin, interstitial proliferation and SMAD2 signaling, Dapk2 null mice showed reduced interstitial collagen accumulation. CONCLUSIONS: In the kidney, DAPK2 is strongly and specifically expressed in interstitial cells of the cortex, providing a useful marker for this important cell population. Dapk2 null mice are phenotypically normal under steady state conditions, but display some resistance to extracellular matrix deposition in experimental renal fibrosis indicating that DAPK2 plays a profibrotic role in kidney injury

    A dimeric peptide with erythropoiesis-stimulating activity uniquely affects erythropoietin receptor ligation and cell surface expression.

    No full text
    Erythropoiesis-stimulating agents (ESAs) that exert long-acting antianemia effects have been developed recently, but their mechanisms are poorly understood. Analyses reveal unique erythropoietin receptor (EPOR)-binding properties for one such ESA, the synthetic EPOR agonist peginesatide. Compared with recombinant human EPO and darbepoietin, peginesatide exhibited a slow on rate, but sustained EPOR residency and resistant displacement. In EPO-dependent human erythroid progenitor UT7epo cells, culture in peginesatide unexpectedly upmodulated endogenous cell surface EPOR levels with parallel increases in full-length EPOR-68K levels. These unique properties are suggested to contribute to the durable activity of this (and perhaps additional) dimeric peptide hematopoietic growth factor receptor agonist

    Ineffective erythropoiesis of TET2 deficiency

    No full text

    Signals for stress erythropoiesis are integrated via an erythropoietin receptor–phosphotyrosine-343–Stat5 axis

    No full text
    Anemia due to chronic disease or chemotherapy often is ameliorated by erythropoietin (Epo). Present studies reveal that, unlike steady-state erythropoiesis, erythropoiesis during anemia depends sharply on an Epo receptor–phosphotyrosine-343–Stat5 signaling axis. In mice expressing a phosphotyrosine-null (PY-null) Epo receptor allele (EpoR-HM), severe and persistent anemia was induced by hemolysis or 5-fluorouracil. In short-term transplantation experiments, donor EpoR-HM bone marrow cells also failed to efficiently repopulate the erythroid compartment. In each context, stress erythropoiesis was rescued to WT levels upon the selective restoration of an EpoR PY343 Stat5-binding site (EpoR-H allele). As studied using a unique primary culture system, EpoR-HM erythroblasts exhibited marked stage-specific losses in Epo-dependent growth and survival. EpoR-H PY343 signals restored efficient erythroblast expansion, and the selective Epo induction of the Stat5 target genes proviral integration site-1 (Pim-1) and oncostatin-M. Bcl2-like 1 (Bcl-x), in contrast, was not significantly induced via WT-EpoR, EpoR-HM, or EpoR-H alleles. In Kit(+)CD71(+) erythroblasts, EpoR-PY343 signals furthermore enhanced SCF growth effects, and SCF modulation of Pim-1 kinase and oncostatin-M expression. In maturing Kit(–)CD71(+) erythroblasts, oncostatin-M exerted antiapoptotic effects that likewise depended on EpoR PY343–mediated events. Stress erythropoiesis, therefore, requires stage-specific EpoR-PY343-Stat5 signals, some of which selectively bolster SCF and oncostatin-M action
    • …
    corecore