5 research outputs found

    Survival of Lactobacillus reuteri DSM 17938 and Lactobacillus rhamnosus GG in the Human Gastrointestinal Tract with Daily Consumption of a Low-Fat Probiotic Spreadâ–ż

    No full text
    Probiotics are live microorganisms which, when administered in adequate amounts, confer a health benefit on the host. Therefore, probiotic strains should be able to survive passage through the human gastrointestinal tract. Human gastrointestinal tract survival of probiotics in a low-fat spread matrix has, however, never been tested. The objective of this randomized, double-blind, placebo-controlled human intervention study was to test the human gastrointestinal tract survival of Lactobacillus reuteri DSM 17938 and Lactobacillus rhamnosus GG after daily consumption of a low-fat probiotic spread by using traditional culturing, as well as molecular methods. Forty-two healthy human volunteers were randomly assigned to one of three treatment groups provided with 20 g of placebo spread (n = 13), 20 g of spread with a target dose of 1 Ă— 109 CFU of L. reuteri DSM 17938 (n = 13), or 20 g of spread with a target dose of 5 Ă— 109 CFU of L. rhamnosus GG (n = 16) daily for 3 weeks. Fecal samples were obtained before and after the intervention period. A significant increase, compared to the baseline, in the recovery of viable probiotic lactobacilli in fecal samples was demonstrated after 3 weeks of daily consumption of the spread containing either L. reuteri DSM 17938 or L. rhamnosus GG by selective enumeration. In the placebo group, no increase was detected. The results of selective enumeration were supported by quantitative PCR, detecting a significant increase in DNA resulting from the probiotics after intervention. Overall, our results indicate for the first time that low-fat spread is a suitable carrier for these probiotic strains

    Modulation of colonic inflammation in Mdr1a-/- mice by green tea polyphenols and their effects on the colon transcriptome and proteome

    No full text
    Animal models are an important tool to understand the complex pathogenesis of inflammatory bowel diseases (IBDs). This study tested the anti-inflammatory potential of a green tea extract rich in polyphenols (GrTP) in the colon of the multidrug resistance targeted mutation ( Mdr1a) mouse model of IBD. Insights into mechanisms responsible for this reduction in inflammation were gained using transcriptome and proteome analyses. Mice were randomly assigned to an AIN-76A (control) or GrTP-enriched diet. At 21 or 24 weeks of age, a colonic histological injury score was determined for each mouse, colon mRNA transcript levels were assessed using microarrays, and colon protein expression was measured using two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry protein identification. Mean colonic histological injury score of GrTP-fed Mdr1a mice was significantly lower compared to those fed the control diet. Microarray and proteomics analyses showed reduced abundance of transcripts and proteins associated with immune and inflammatory response and fibrinogenesis pathways, and increased abundance of those associated with xenobiotic metabolism pathways in response to GrTP, suggesting that its anti-inflammatory activity is mediated by multiple molecular pathways. Peroxisome proliferator-activated receptor-α and signal transducer and activator of transcription 1 appear to be two key molecules which regulate these effects. These results support the view that dietary intake of polyphenols derived from green tea can ameliorate intestinal inflammation in the colon of a mouse model of IBD, and are in agreement with studies suggesting that consumption of green tea may reduce IBD symptoms and therefore play a part in an overall IBD treatment regimen
    corecore