50 research outputs found

    High-pressure polymeric nitrogen allotrope with the black phosphorus structure

    Full text link
    Studies of polynitrogen phases are of great interest for fundamental science and for the design of novel high energy density materials. Laser heating of pure nitrogen at 140 GPa in a diamond anvil cell led to the synthesis of a polymeric nitrogen allotrope with the black phosphorus structure, bp-N. The structure was identified in situ using synchrotron single-crystal X-ray diffraction and further studied by Raman spectroscopy and density functional theory calculations. The discovery of bp-N brings nitrogen in line with heavier pnictogen elements, resolves incongruities regarding polymeric nitrogen phases and provides insights into polynitrogen arrangements at extreme densities

    Anionic N₁₈ Macrocycles and a Polynitrogen Double Helix in Novel Yttrium Polynitrides YN₆ and Y₂N₁₁ at 100 GPa

    Get PDF
    Two novel yttrium nitrides, YN(6) and Y(2)N(11), were synthesized by direct reaction between yttrium and nitrogen at 100 GPa and 3000 K in a laser‐heated diamond anvil cell. High‐pressure synchrotron single‐crystal X‐ray diffraction revealed that the crystal structures of YN(6) and Y(2)N(11) feature a unique organization of nitrogen atoms—a previously unknown anionic N(18) macrocycle and a polynitrogen double helix, respectively. Density functional theory calculations, confirming the dynamical stability of the YN(6) and Y(2)N(11) compounds, show an anion‐driven metallicity, explaining the unusual bond orders in the polynitrogen units. As the charge state of the polynitrogen double helix in Y(2)N(11) is different from that previously found in Hf(2)N(11) and because N(18) macrocycles have never been predicted or observed, their discovery significantly extends the chemistry of polynitrides

    Polytypism of Incommensurately Modulated Structures of Crystalline Bromine upon Molecular Dissociation under High Pressure

    Full text link
    Polytypism of incommensurately modulated structures was hitherto unobserved. Here, we found the phenomenon in simple halogen systems of bromine and iodine upon molecular dissociation in the solids under pressure. Single-crystal synchrotron X-ray diffraction in laser heated diamond anvil cells pressurised up to 112 GPa revealed a number of allotropes of bromine and iodine including polytypes of Br-III{\gamma} (Fmmm(00{\gamma})s00) with {\gamma} varying within 0.18 to 0.3
    corecore