10 research outputs found

    Lack of Cooperativity in the Triangular X<sub>3</sub>Halogen-Bonded Synthon?

    No full text
    We have investigated 44 crystal structures, found in the Cambridge Structural Database, containing the X3 synthon (where X = Cl, Br, I) in order to verify whether three type II halogen-halogen contacts forming the synthon exhibit cooperativity. A hypothesis that this triangular halogen-bonded motif is stabilized by cooperative effects is postulated on the basis of structural data. However, theoretical investigations of simplified model systems in which the X3 motif is present demonstrate that weak synergy occurs only in the case of the I3 motif. In the present paper we computationally investigate crystal structures in which the X3 synthon is present, including halomesitylene structures, that are usually described as being additionally stabilized by a synergic interaction. Our computations find no cooperativity for halomesitylene trimers containing the X3 motif. Only in the case of two other structures containing the I3 synthon a very weak or weak synergy, i.e. the cooperative effect being stronger than -0.40 kcal mol-1, is found. The crystal structure of iodoform has the most pronounced cooperativity of all investigated systems, amounting to about 10% of the total interaction energy

    Capturing the elusive aromaticity of bicalicene

    No full text
    <p>The ring-current aromaticity of the bicalicene molecule arises, in spite of the 16 p carbon perimeter, from strong local diatropic circulations on the two pentagonal rings, as shown by current-density maps computed at the ipsocentric RHF/6-311G** and DFT/6-311G** levels of theory. Conjugated-circuit models cannot capture this pattern of circulation as it arises from 'ionic' contributions in a valence-bond picture. Canonical molecular-orbital analysis reveals a cancellation of paratropic and diatropic frontier-orbital contributions, which explains the difficulties that Huckel-based models have in producing qualitatively correct current-density maps for this molecule. Other measures of aromaticity reflect, to different extents, the dominance of the 'tetraionic' contribution to the aromaticity of this species.</p>

    Free Cyclooctatetraene Dianion: Planarity, Aromaticity, and Theoretical Challenges

    No full text

    Aromaticity from the Viewpoint of Molecular Geometry: Application to Planar Systems

    No full text
    corecore