3 research outputs found

    Microbiological Properties of Microwave-Activated Carbons Impregnated with Enoxil and Nanoparticles of Ag and Se

    No full text
    Microwave-activated carbons from walnut shells (ACMW) were impregnated with Ag and Se nanoparticles and with the Enoxil biologically active preparation, and the microbiological properties of the obtained composites were studied. To increase the functionality of the adsorbent, the activated carbon was oxidized with ozone, resulting in ACMWO containing aliphatic and aromatic carboxylic groups. There was a considerable decrease in the specific surface of the activated carbon after the oxidation process. Nitrogen adsorption was used to determine the structural parameters of the activated carbons. A simultaneous thermal analysis was used to study the thermal behavior of intact and oxidized activated carbons. Infrared spectroscopy was applied to analyze the surface chemistry of the adsorbents. The microbiological activity of the activated carbons was studied using Escherichia coli bacteria and Candida albicans fungi. The kinetic study of the microbiological activity allowed the estimation of the bactericidal/fungicidal action time of the activated carbons

    Electrophoretic Deposition of Graphene Oxide on Stainless Steel Substrate

    No full text
    We demonstrated the deposition of the architecture of graphene oxide on stainless steel substrate and its potential environmental application. The synthesis and characterization of graphene oxide were described. The controlled formation of graphene oxide coatings in the form of the homogenous structure on stainless steel is demonstrated by scanning electron microscopy (SEM). The structure, morphology and properties of the material were assessed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM). The morphology and stability of these structures are shown to be particularly related to the pre-treatment of stainless steel substrate before the electrophoretic deposition. This approach opens up a new route to the facile fabrication of advanced electrode coatings with potential use in environmental applications

    Studies on the Potential of Nonmodified and Metal Oxide-Modified Coal Fly Ash Zeolites For Adsorption of Heavy Metals and Catalytic Degradation of Organics for Waste Water Recovery

    No full text
    A nanocrystalline zeolite of Na-X type (CFAZ) was synthesized by ultrasonic-assisted double stage fusion-hydrothermal alkaline conversion of lignite coal fly ash. Modified CFAZ with magnetic nanoparticles (MNP-CFAZ) was obtained by adding presynthesized magnetic nanoparticles between the synthesis stages. CFAZs loaded by particles of copper (Cu-CFAZ) and cobalt (Co-CFAZ) oxides were prepared by postsynthesis modification of the parent CFAZ, applying a wet impregnation technique. The parent and modified CFAZs were examined for their phase composition by X-ray diffraction, morphology by scanning electron microscopy, and surface characteristics by N2 physisorption. Comparative studies have been carried out on the adsorption capacity of the starting CFAZ and its derivatives with respect to Cd2+- and Pb2+-ions from aqueous solutions. Adsorption isotherms of Cd2+-ions on the studied samples were plotted and described by the adsorption equations of Langmuir, Freundlich, Langmuir–Freundlich, and Temkin. The best correlation between the experimental and model isotherms for the parent and modified CFAZ was found with the Langmuir linear model, assuming a monolayer adsorption mechanism. Parent and modified CFAZs were also studied as catalysts for heterogeneous thermal Fenton oxidation of methylene blue. At 90 °C, the higher catalytic activity exhibits the nonmodified sample, but with the decrease in temperature to 60 °C, the modified samples are more effective catalysts
    corecore