24 research outputs found

    Superfluidity of Interacting Bosonic Mixtures in Optical Lattices

    Full text link
    We report the observation of many-body interaction effects for a homonuclear bosonic mixture in a three-dimensional optical lattice with variable state dependence along one axis. Near the superfluid-to-Mott insulator transition for one component, we find that the presence of a second component can reduce the apparent superfluid coherence, most significantly when it either experiences a strongly localizing lattice potential or none at all. We examine this effect by varying the relative populations and lattice depths, and discuss the observed behavior in view of recent proposals for scattering from impurities and of atom-phonon coupling for atoms immersed in a superfluid.Comment: 4 pages, 3 figure

    Collinear Four-Wave Mixing of Two-Component Matter Waves

    Full text link
    We demonstrate atomic four-wave mixing of two-component matter waves in a collinear geometry. Starting from a single-species Bose-Einstein condensate, seed and pump modes are prepared through microwave state transfer and state-selective Kapitza-Dirac diffraction. Four-wave mixing then populates the initially empty output modes. Simulations based on a coupled-mode expansion of the Gross-Pitaevskii equation are in very good agreement with the experimental data. We show that four-wave mixing can play an important role in studies of bosonic mixtures in optical lattices. Moreover our system should be of interest in the context of quantum atom optics.Comment: 4 pages, 4 figures; revised version, essentially as publishe
    corecore