3 research outputs found

    Cutting inserts made of glass and glass ceramics

    Get PDF
    Against the background of the increasing cost and scarcity of raw materials that are required for the manufacture of cutting tools, the question of alternative cutting materials arises. Glasses and glass ceramics represent a possibility for this, the use of which has hardly been considered so far. This thesis is devoted to the question of whether cutting tools can be made from glass and glass ceramic materials at all. In addition, the question of how such tools can be used for which purposes is dealt with. First results on both questions are presented. The grinding of indexable inserts from the materials examined was possible without breaking corners and edges. Plastics can be easily machined with the tools produced. When machining aluminum, however, the tools made of glass fail completely, while those made of glass–ceramic show good results here too. These first results are intended to pave the way for further research in this area

    Wear-adaptive optimization of in-process conditioning parameters during face plunge grinding of PcBN

    Get PDF
    Polycrystalline cubic boron nitride is a very hard material. Machining of this material is performed by grinding with diamond tools. Due to its high hardness, grinding tools are subjected to severe microscopic and macroscopic tool wear. This wear leads to short tool life and results in high effort in conditioning the abrasive layer. Contrary to the usual conditioning of diamond grinding wheels with diamond dressing tools, this study investigates a conditioning process based entirely on the use of white corundum cup rolls. These conditioning tools allow the in-process face plunge conditioning of vitrified bond diamond grinding tools. The circumferential speed of the conditioning tool and the average grain diameter of the corundum are identified as the main factors influencing the topography of the generated grinding layer. To describe the performance of the conditioning process, a specific conditioning removal rate Q′sd is derived. This parameter represents a cumulated variable that allows a comparison of different conditioning strategies. It is shown that an increase in Q′sd significantly counteracts microscopic wear on the abrasive layer. Therefore, optimized process parameters enable the process of in-process conditioning to significantly reduce wear on the grinding tool without increasing the process time or the non-productive time
    corecore