787 research outputs found

    El método de los elementos de contorno en los problemas de mecánica del suelo

    Get PDF
    La preparación de estas notas ha llevado, al más veterano de los autores, a rememorar sus primeros tanteos con los métodos numéricos. Tratando de desarrollar su tesis doctoral sobre efectos dinámicos en puentes de ferrocarril, descubrió, en 1968, en la biblioteca del Laboratorio de Transporte (donde el profesor ]iménez Salas era Director) las Actas de la reunión ASTM en las que Quilan y Sung proponían la asimilación del comportamiento dinámico del semiespacio elástico a un sistema con un grado de libertad. Además de incorporar estos resultados a un modelo de puente para tener en cuenta los fenómenos de interacción dinámica terreno-estructura dicho autor entró en contacto con algunos miembros del equipo de investigación del Prof. ]iménez Salas que, por entonces, estaba explorando la posibilidad de aplicación del ordenador y los métodos numéricos necesarios para tratar los problemas más difíciles de Mecánica de los Medios Continuos. De hecho fue ese grupo quien contribuyó a introducir en España el método de los elementos finitos en la ingeniería civil, pero además, y en relación directa con el título de este artículo fue el propio ]iménez Salas quién inició la línea de trabajo de lo que mas tarde se ha llamado Método Indirecto de Elementos de Contorno que luego fue seguida por otros miembros de su grupo. En aquélla época poco podía sospechar el autor precitado que iba a dedicar una parte sustancial de su vida al desarrollo de ese método numérico en su versión Directa y mucho menos que gran parte de la motivación vendría del problema de interacción dinámica terreno-estructura, una de cuyas primeras soluciones había obtenido en la mencionada visita al Laboratorio de Transporte. En efecto los autores trataban en 1975 de encontrar un procedimiento que les permitiera afrontar el estudio de la interacción en túneles sometidos a carga sísmica y tropezaron, al utilizar el método de elementos finitos, con el problema de las reflexiones de ondas en los contornos artificiales creados al truncar la malla de cálculo. Deseando evitar el uso contornos absorbentes y otros recursos similares se exploró la posibilidad de soluciones fundamentales que incorporasen el comportamiento en el infmito y, fruto de ello, fueron los primeros trabajos que introdujeron el Método Directo de los Elementos de Contorno en España en problemas estáticos. La extensión a teoría del potencial, dinámica en el dominio de la frecuencia, plasticidad, etc tuvo lugar inmediatamente siendo en la mayoría de los casos los problemas típicos de mecánica del suelo los que motivaron y justifican el esfuerzo realizado. Un campo apasionante, el de la poroelasticidad ha dado lugar a nuevas contribuciones y también se han escrito libros de diverso calado que describen las posibilidades del método para dar contestación a preguntas de gran importancia técnica. Los autores quieren poner de manifiesto que la redacción de este trabajo, debe considerarse no solo como la muestra de algunos resultados de aplicación a problemas prácticos, sino también como un homenaje y reconocimiento explícito a la labor precursora del Prof. ]iménez Salas y a su espíritu de permanente curiosidad por el conocimiento científico

    Thermally Induced Fluctuations Below the Onset of Rayleigh-B\'enard Convection

    Full text link
    We report quantitative experimental results for the intensity of noise-induced fluctuations below the critical temperature difference ΔTc\Delta T_c for Rayleigh-B\'enard convection. The structure factor of the fluctuating convection rolls is consistent with the expected rotational invariance of the system. In agreement with predictions based on stochastic hydrodynamic equations, the fluctuation intensity is found to be proportional to 1/ϵ1/\sqrt{-\epsilon} where ϵΔT/ΔTc1\epsilon \equiv \Delta T / \Delta T_c -1. The noise power necessary to explain the measurements agrees with the prediction for thermal noise. (WAC95-1)Comment: 13 pages of text and 4 Figures in a tar-compressed and uuencoded file (using uufiles package). Detailed instructions of unpacking are include

    Applying Laser Doppler Anemometry inside a Taylor-Couette geometry - Using a ray-tracer to correct for curvature effects

    Get PDF
    In the present work it will be shown how the curvature of the outer cylinder affects Laser Doppler anemometry measurements inside a Taylor-Couette apparatus. The measurement position and the measured velocity are altered by curved surfaces. Conventional methods for curvature correction are not applicable to our setup, and it will be shown how a ray-tracer can be used to solve this complication. By using a ray-tracer the focal position can be calculated, and the velocity can be corrected. The results of the ray-tracer are verified by measuring an a priori known velocity field, and after applying refractive corrections good agreement with theoretical predictions are found. The methods described in this paper are applied to measure the azimuthal velocity profiles in high Reynolds number Taylor-Couette flow for the case of outer cylinder rotation

    Boundary Limitation of Wavenumbers in Taylor-Vortex Flow

    Full text link
    We report experimental results for a boundary-mediated wavenumber-adjustment mechanism and for a boundary-limited wavenumber-band of Taylor-vortex flow (TVF). The system consists of fluid contained between two concentric cylinders with the inner one rotating at an angular frequency Ω\Omega. As observed previously, the Eckhaus instability (a bulk instability) is observed and limits the stable wavenumber band when the system is terminated axially by two rigid, non-rotating plates. The band width is then of order ϵ1/2\epsilon^{1/2} at small ϵ\epsilon (ϵΩ/Ωc1\epsilon \equiv \Omega/\Omega_c - 1) and agrees well with calculations based on the equations of motion over a wide ϵ\epsilon-range. When the cylinder axis is vertical and the upper liquid surface is free (i.e. an air-liquid interface), vortices can be generated or expelled at the free surface because there the phase of the structure is only weakly pinned. The band of wavenumbers over which Taylor-vortex flow exists is then more narrow than the stable band limited by the Eckhaus instability. At small ϵ\epsilon the boundary-mediated band-width is linear in ϵ\epsilon. These results are qualitatively consistent with theoretical predictions, but to our knowledge a quantitative calculation for TVF with a free surface does not exist.Comment: 8 pages incl. 9 eps figures bitmap version of Fig

    Mean flow in hexagonal convection: stability and nonlinear dynamics

    Get PDF
    Weakly nonlinear hexagon convection patterns coupled to mean flow are investigated within the framework of coupled Ginzburg-Landau equations. The equations are in particular relevant for non-Boussinesq Rayleigh-B\'enard convection at low Prandtl numbers. The mean flow is found to (1) affect only one of the two long-wave phase modes of the hexagons and (2) suppress the mixing between the two phase modes. As a consequence, for small Prandtl numbers the transverse and the longitudinal phase instability occur in sufficiently distinct parameter regimes that they can be studied separately. Through the formation of penta-hepta defects, they lead to different types of transient disordered states. The results for the dynamics of the penta-hepta defects shed light on the persistence of grain boundaries in such disordered states.Comment: 33 pages, 20 figures. For better figures:http://astro.uchicago.edu/~young/hexmeandi

    Spiral Defect Chaos in Large Aspect Ratio Rayleigh-Benard Convection

    Full text link
    We report experiments on convection patterns in a cylindrical cell with a large aspect ratio. The fluid had a Prandtl number of approximately 1. We observed a chaotic pattern consisting of many rotating spirals and other defects in the parameter range where theory predicts that steady straight rolls should be stable. The correlation length of the pattern decreased rapidly with increasing control parameter so that the size of a correlated area became much smaller than the area of the cell. This suggests that the chaotic behavior is intrinsic to large aspect ratio geometries.Comment: Preprint of experimental paper submitted to Phys. Rev. Lett. May 12 1993. Text is preceeded by many TeX macros. Figures 1 and 2 are rather lon

    Electroconvection in a Suspended Fluid Film: A Linear Stability Analysis

    Full text link
    A suspended fluid film with two free surfaces convects when a sufficiently large voltage is applied across it. We present a linear stability analysis for this system. The forces driving convection are due to the interaction of the applied electric field with space charge which develops near the free surfaces. Our analysis is similar to that for the two-dimensional B\'enard problem, but with important differences due to coupling between the charge distribution and the field. We find the neutral stability boundary of a dimensionless control parameter R{\cal R} as a function of the dimensionless wave number κ{\kappa}. R{\cal R}, which is proportional to the square of the applied voltage, is analogous to the Rayleigh number. The critical values Rc{{\cal R}_c} and κc{\kappa_c} are found from the minimum of the stability boundary, and its curvature at the minimum gives the correlation length ξ0{\xi_0}. The characteristic time scale τ0{\tau_0}, which depends on a second dimensionless parameter P{\cal P}, analogous to the Prandtl number, is determined from the linear growth rate near onset. ξ0{\xi_0} and τ0{\tau_0} are coefficients in the Ginzburg-Landau amplitude equation which describes the flow pattern near onset in this system. We compare our results to recent experiments.Comment: 36 pages, 7 included eps figures, submitted to Phys Rev E. For more info, see http://mobydick.physics.utoronto.ca

    Domain Structures in Fourth-Order Phase and Ginzburg-Landau Equations

    Full text link
    In pattern-forming systems, competition between patterns with different wave numbers can lead to domain structures, which consist of regions with differing wave numbers separated by domain walls. For domain structures well above threshold we employ the appropriate phase equation and obtain detailed qualitative agreement with recent experiments. Close to threshold a fourth-order Ginzburg-Landau equation is used which describes a steady bifurcation in systems with two competing critical wave numbers. The existence and stability regime of domain structures is found to be very intricate due to interactions with other modes. In contrast to the phase equation the Ginzburg-Landau equation allows a spatially oscillatory interaction of the domain walls. Thus, close to threshold domain structures need not undergo the coarsening dynamics found in the phase equation far above threshold, and can be stable even without phase conservation. We study their regime of stability as a function of their (quantized) length. Domain structures are related to zig-zags in two-dimensional systems. The latter are therefore expected to be stable only when quenched far enough beyond the zig-zag instability.Comment: Submitted to Physica D, 11 pages (RevTeX 3), 12 postscript figure

    Subharmonic bifurcation cascade of pattern oscillations caused by winding number increasing entrainment

    Full text link
    Convection structures in binary fluid mixtures are investigated for positive Soret coupling in the driving regime where solutal and thermal contributions to the buoyancy forces compete. Bifurcation properties of stable and unstable stationary square, roll, and crossroll (CR) structures and the oscillatory competition between rolls and squares are determined numerically as a function of fluid parameters. A novel type of subharmonic bifurcation cascade (SC) where the oscillation period grows in integer steps as n(2π)/(ω)n (2\pi)/(\omega) is found and elucidated to be an entrainment process.Comment: 7 pages, 4 figure
    corecore