787 research outputs found
El método de los elementos de contorno en los problemas de mecánica del suelo
La preparación de estas notas ha llevado, al más veterano
de los autores, a rememorar sus primeros tanteos con los
métodos numéricos. Tratando de desarrollar su tesis doctoral sobre efectos dinámicos en puentes de ferrocarril, descubrió, en 1968, en la biblioteca del Laboratorio de Transporte (donde el profesor ]iménez Salas era Director) las Actas de la reunión ASTM en las que Quilan y Sung proponían la asimilación del comportamiento dinámico del semiespacio elástico a un sistema con un grado de libertad. Además de incorporar estos resultados a un modelo de puente para tener en cuenta los fenómenos de interacción dinámica terreno-estructura dicho autor entró en contacto con algunos miembros del equipo de investigación del Prof. ]iménez Salas que, por entonces, estaba explorando la posibilidad de aplicación del ordenador y los métodos numéricos necesarios para tratar los problemas más difíciles de Mecánica de los Medios Continuos. De hecho fue ese grupo quien contribuyó a introducir en España el método de los elementos finitos en la ingeniería civil, pero además, y en relación directa con el título de este artículo fue el propio ]iménez Salas quién inició la línea de trabajo de lo que mas tarde se ha llamado Método Indirecto de Elementos de Contorno que luego fue seguida por otros miembros de su grupo. En aquélla época poco podía sospechar el autor precitado que iba a dedicar una parte sustancial de su vida al desarrollo de ese método numérico en su versión Directa y mucho menos que gran parte de la motivación vendría del problema de interacción dinámica terreno-estructura, una de cuyas primeras soluciones había
obtenido en la mencionada visita al Laboratorio de Transporte. En efecto los autores trataban en 1975 de
encontrar un procedimiento que les permitiera afrontar el
estudio de la interacción en túneles sometidos a carga
sísmica y tropezaron, al utilizar el método de elementos finitos, con el problema de las reflexiones de ondas en los contornos artificiales creados al truncar la malla de cálculo. Deseando evitar el uso contornos absorbentes y otros recursos similares se exploró la posibilidad de soluciones fundamentales que incorporasen el comportamiento en el infmito y, fruto de ello, fueron los primeros trabajos que introdujeron el Método Directo de los Elementos de Contorno en España en problemas estáticos. La extensión a teoría del potencial, dinámica en el dominio de la frecuencia, plasticidad, etc tuvo lugar inmediatamente siendo en la mayoría de los casos los problemas típicos de mecánica del suelo los que motivaron y justifican el esfuerzo realizado. Un campo apasionante, el de la poroelasticidad ha dado lugar a nuevas contribuciones y también se han escrito libros de diverso calado que describen las posibilidades del método para dar contestación a preguntas de gran importancia técnica. Los autores quieren poner de manifiesto que la redacción de este trabajo, debe considerarse no solo como la muestra de algunos resultados de aplicación a problemas prácticos, sino también como un homenaje y reconocimiento explícito a la labor precursora del Prof. ]iménez Salas y a su espíritu de permanente curiosidad por el conocimiento científico
Thermally Induced Fluctuations Below the Onset of Rayleigh-B\'enard Convection
We report quantitative experimental results for the intensity of
noise-induced fluctuations below the critical temperature difference for Rayleigh-B\'enard convection. The structure factor of the fluctuating
convection rolls is consistent with the expected rotational invariance of the
system. In agreement with predictions based on stochastic hydrodynamic
equations, the fluctuation intensity is found to be proportional to
where . The
noise power necessary to explain the measurements agrees with the prediction
for thermal noise. (WAC95-1)Comment: 13 pages of text and 4 Figures in a tar-compressed and uuencoded file
(using uufiles package). Detailed instructions of unpacking are include
Applying Laser Doppler Anemometry inside a Taylor-Couette geometry - Using a ray-tracer to correct for curvature effects
In the present work it will be shown how the curvature of the outer cylinder
affects Laser Doppler anemometry measurements inside a Taylor-Couette
apparatus. The measurement position and the measured velocity are altered by
curved surfaces. Conventional methods for curvature correction are not
applicable to our setup, and it will be shown how a ray-tracer can be used to
solve this complication.
By using a ray-tracer the focal position can be calculated, and the velocity
can be corrected. The results of the ray-tracer are verified by measuring an a
priori known velocity field, and after applying refractive corrections good
agreement with theoretical predictions are found. The methods described in this
paper are applied to measure the azimuthal velocity profiles in high Reynolds
number Taylor-Couette flow for the case of outer cylinder rotation
Boundary Limitation of Wavenumbers in Taylor-Vortex Flow
We report experimental results for a boundary-mediated wavenumber-adjustment
mechanism and for a boundary-limited wavenumber-band of Taylor-vortex flow
(TVF). The system consists of fluid contained between two concentric cylinders
with the inner one rotating at an angular frequency . As observed
previously, the Eckhaus instability (a bulk instability) is observed and limits
the stable wavenumber band when the system is terminated axially by two rigid,
non-rotating plates. The band width is then of order at small
() and agrees well with
calculations based on the equations of motion over a wide -range.
When the cylinder axis is vertical and the upper liquid surface is free (i.e.
an air-liquid interface), vortices can be generated or expelled at the free
surface because there the phase of the structure is only weakly pinned. The
band of wavenumbers over which Taylor-vortex flow exists is then more narrow
than the stable band limited by the Eckhaus instability. At small
the boundary-mediated band-width is linear in . These results are
qualitatively consistent with theoretical predictions, but to our knowledge a
quantitative calculation for TVF with a free surface does not exist.Comment: 8 pages incl. 9 eps figures bitmap version of Fig
Mean flow in hexagonal convection: stability and nonlinear dynamics
Weakly nonlinear hexagon convection patterns coupled to mean flow are
investigated within the framework of coupled Ginzburg-Landau equations. The
equations are in particular relevant for non-Boussinesq Rayleigh-B\'enard
convection at low Prandtl numbers. The mean flow is found to (1) affect only
one of the two long-wave phase modes of the hexagons and (2) suppress the
mixing between the two phase modes. As a consequence, for small Prandtl numbers
the transverse and the longitudinal phase instability occur in sufficiently
distinct parameter regimes that they can be studied separately. Through the
formation of penta-hepta defects, they lead to different types of transient
disordered states. The results for the dynamics of the penta-hepta defects shed
light on the persistence of grain boundaries in such disordered states.Comment: 33 pages, 20 figures. For better
figures:http://astro.uchicago.edu/~young/hexmeandi
Spiral Defect Chaos in Large Aspect Ratio Rayleigh-Benard Convection
We report experiments on convection patterns in a cylindrical cell with a
large aspect ratio. The fluid had a Prandtl number of approximately 1. We
observed a chaotic pattern consisting of many rotating spirals and other
defects in the parameter range where theory predicts that steady straight rolls
should be stable. The correlation length of the pattern decreased rapidly with
increasing control parameter so that the size of a correlated area became much
smaller than the area of the cell. This suggests that the chaotic behavior is
intrinsic to large aspect ratio geometries.Comment: Preprint of experimental paper submitted to Phys. Rev. Lett. May 12
1993. Text is preceeded by many TeX macros. Figures 1 and 2 are rather lon
Electroconvection in a Suspended Fluid Film: A Linear Stability Analysis
A suspended fluid film with two free surfaces convects when a sufficiently
large voltage is applied across it. We present a linear stability analysis for
this system. The forces driving convection are due to the interaction of the
applied electric field with space charge which develops near the free surfaces.
Our analysis is similar to that for the two-dimensional B\'enard problem, but
with important differences due to coupling between the charge distribution and
the field. We find the neutral stability boundary of a dimensionless control
parameter as a function of the dimensionless wave number .
, which is proportional to the square of the applied voltage, is
analogous to the Rayleigh number. The critical values and
are found from the minimum of the stability boundary, and its
curvature at the minimum gives the correlation length . The
characteristic time scale , which depends on a second dimensionless
parameter , analogous to the Prandtl number, is determined from the
linear growth rate near onset. and are coefficients in the
Ginzburg-Landau amplitude equation which describes the flow pattern near onset
in this system. We compare our results to recent experiments.Comment: 36 pages, 7 included eps figures, submitted to Phys Rev E. For more
info, see http://mobydick.physics.utoronto.ca
Domain Structures in Fourth-Order Phase and Ginzburg-Landau Equations
In pattern-forming systems, competition between patterns with different wave
numbers can lead to domain structures, which consist of regions with differing
wave numbers separated by domain walls. For domain structures well above
threshold we employ the appropriate phase equation and obtain detailed
qualitative agreement with recent experiments. Close to threshold a
fourth-order Ginzburg-Landau equation is used which describes a steady
bifurcation in systems with two competing critical wave numbers. The existence
and stability regime of domain structures is found to be very intricate due to
interactions with other modes.
In contrast to the phase equation the Ginzburg-Landau equation allows a
spatially oscillatory interaction of the domain walls. Thus, close to threshold
domain structures need not undergo the coarsening dynamics found in the phase
equation far above threshold, and can be stable even without phase
conservation. We study their regime of stability as a function of their
(quantized) length. Domain structures are related to zig-zags in
two-dimensional systems. The latter are therefore expected to be stable only
when quenched far enough beyond the zig-zag instability.Comment: Submitted to Physica D, 11 pages (RevTeX 3), 12 postscript figure
Subharmonic bifurcation cascade of pattern oscillations caused by winding number increasing entrainment
Convection structures in binary fluid mixtures are investigated for positive
Soret coupling in the driving regime where solutal and thermal contributions to
the buoyancy forces compete. Bifurcation properties of stable and unstable
stationary square, roll, and crossroll (CR) structures and the oscillatory
competition between rolls and squares are determined numerically as a function
of fluid parameters. A novel type of subharmonic bifurcation cascade (SC) where
the oscillation period grows in integer steps as is found
and elucidated to be an entrainment process.Comment: 7 pages, 4 figure
- …