34 research outputs found
The Impact of Climate Change and Climate Variability on Agriculture in the US: the Ricardian Approach Revisited
Climate is changing and its variability is increasing (IPPC AR4, 2007) US agriculture produces 17.8% of worldâs grains and 9% of its cattle. Numerous sectors rely on agriculture (I/O linkages) Consequences for farmers, ranchers, policy-makers and the general public Impact of climate change on US agriculture is unclear (various climate zones
Dry-to-Wet Soil Gradients Enhance Convection and Rainfall over Subtropical South America
Soil moisture-precipitation (SM-PPT) feedbacks at the mesoscale represent a
major challenge for numerical weather prediction, especially for subtropical
regions that exhibit large variability in surface SM. How does surface
heterogeneity, specifically mesoscale gradients in SM and land surface
temperature (LST), affect convective initiation (CI) over South America? Using
satellite data, we track nascent, daytime convective clouds and quantify the
underlying antecedent (morning) surface heterogeneity. We find that convection
initiates preferentially on the dry side of strong SM/LST boundaries with
spatial scales of tens of kilometers. The strongest alongwind gradients in LST
anomalies at 30 km length scale underlying the CI location occur during weak
background low-level wind (<2.5m/s), high convective available potential energy
(>1500J/kg) and low convective inhibition (<250J/kg) over sparse vegetation. At
100 km scale, strong gradients occur at the CI location during convectively
unfavorable conditions and strong background flow. The location of PPT is
strongly sensitive to the strength of the background flow. The wind profile
during weak background flow inhibits propagation of convection away from the
dry regions leading to negative SM-PPT feedback whereas strong background flow
is related to longer lifecycle and rainfall hundreds of kilometers away from
the CI location. Thus, the sign of the SM-PPT feedback is dependent on the
background flow. This work presents the first observational evidence that CI
over subtropical South America is associated with dry soil patches on the order
of tens of kilometers. Convection-permitting numerical weather prediction
models need to be examined for accurately capturing the effect of SM
heterogeneity in initiating convection over such semi-arid regions.Comment: 42 pages, 14 figures, 3 tables. Manuscript under peer-revie
Credibility of Convection-Permitting Modeling to Improve Seasonal Precipitation Forecasting in the Southwestern United States
Sub-seasonal to seasonal (S2S) forecasts are critical for planning and management decisions in multiple sectors. This study shows results from dynamical downscaling using a regional climate model at a convection-permitting scale driven by boundary conditions from the global reanalysis of the Climate Forecast System Model (CFSR). Convection-permitting modeling (CPM) enhances the representation of regional climate by better resolving the regional forcings and processes, associated with topography and land cover, in response to variability in the large-scale atmospheric circulation. We performed dynamically downscaled simulations with the Weather Research and Forecasting (WRF) model over the Upper and Lower Colorado basin at 12 km and 3 km grid spacing from 2000 to 2010 to investigate the potential of dynamical downscaling to improved the modeled representation of precipitation the Southwestern United States. Employing a convection-permitting nested domain of 3 km resolution significantly reduces the bias in mean (âŒ2 mm/day) and extreme (âŒ4 mm/day) summer precipitation when compared to coarser domain of 12 km resolution and coarse resolution CFSR products. The convection-permitting modeling product also better represents eastward propagation of organized convection due to mesoscale convective systems at a sub-daily scale, which largely account for extreme summer rainfall during the North American monsoon. In the cool season both coarse and high-resolution simulations perform well with limited bias of âŒ1 mm/day for the mean and âŒ2 mm/day for the extreme precipitation. Significant correlation was found (âŒ0.85 for summer and âŒ0.65 for winter) for both coarse and high-resolution model with observed regionally and seasonally averaged precipitation. Our findings suggest that the use of CPM is necessary in a dynamical modeling system for S2S prediction in this region, especially during the warm season when precipitation is mostly convectively driven
The First 30 Years of GEWEX
The Global Energy and Water Cycle Exchanges (GEWEX) project was created more than 30 years ago within the framework of the World Climate Research Programme (WCRP). The aim of this initiative was to address major gaps in our understanding of Earth's energy and water cycles given a lack of information about the basic fluxes and associated reservoirs of these cycles. GEWEX sought to acquire and set standards for climatological data on variables essential for quantifying water and energy fluxes and for closing budgets at the regional and global scales. In so doing, GEWEX activities led to a greatly improved understanding of processes and our ability to predict them. Such understanding was viewed then, as it remains today, essential for advancing weather and climate prediction from global to regional scales. GEWEX has also demonstrated over time the importance of a wider engagement of different communities and the necessity of international collaboration for making progress on understanding and on the monitoring of the changes in the energy and water cycles under ever increasing human pressures. This paper reflects on the first 30 years of evolution and progress that has occurred within GEWEX. This evolution is presented in terms of three main phases of activity. Progress toward the main goals of GEWEX is highlighted by calling out a few achievements from each phase. A vision of the path forward for the coming decade, including the goals of GEWEX for the future, are also described.</p
Recommended from our members
The First 30 years of GEWEX
International audienceAbstract The Global Energy and Water Cycle EXchanges (GEWEX) project was created more than thirty years ago within the framework of the World Climate Research Programme (WCRP). The aim of this initiative was to address major gaps in our understanding of Earthâs energy and water cycles given a lack of information about the basic fluxes and associated reservoirs of these cycles. GEWEX sought to acquire and set standards for climatological data on variables essential for quantifying water and energy fluxes and for closing budgets at the regional and global scales. In so doing, GEWEX activities led to a greatly improved understanding of processes and our ability to predict them. Such understanding was viewed then, as it remains today, essential for advancing weather and climate prediction from global to regional scales. GEWEX has also demonstrated over time the importance of a wider engagement of different communities and the necessity of international collaboration for making progress on understanding and on the monitoring of the changes in the energy and water cycles under ever increasing human pressures. This paper reflects on the first 30 years of evolution and progress that has occurred within GEWEX. This evolution is presented in terms of three main phases of activity. Progress toward the main goals of GEWEX is highlighted by calling out a few achievements from each phase. A vision of the path forward for the coming decade, including the goals of GEWEX for the future, are also described
Oceanic and terrestrial sources of continental precipitation
Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Reviews of Geophysics 50 (2012): RG4003, doi:10.1029/2012RG000389.The most important sources of atmospheric moisture at the global scale are herein identified, both oceanic and terrestrial, and a characterization is made of how continental regions are influenced by water from different moisture source regions. The methods used to establish source-sink relationships of atmospheric water vapor are reviewed, and the advantages and caveats associated with each technique are discussed. The methods described include analytical and box models, numerical water vapor tracers, and physical water vapor tracers (isotopes). In particular, consideration is given to the wide range of recently developed Lagrangian techniques suitable both for evaluating the origin of water that falls during extreme precipitation events and for establishing climatologies of moisture source-sink relationships. As far as oceanic sources are concerned, the important role of the subtropical northern Atlantic Ocean provides moisture for precipitation to the largest continental area, extending from Mexico to parts of Eurasia, and even to the South American continent during the Northern Hemisphere winter. In contrast, the influence of the southern Indian Ocean and North Pacific Ocean sources extends only over smaller continental areas. The South Pacific and the Indian Ocean represent the principal source of moisture for both Australia and Indonesia. Some landmasses only receive moisture from the evaporation that occurs in the same hemisphere (e.g., northern Europe and eastern North America), while others receive moisture from both hemispheres with large seasonal variations (e.g., northern South America). The monsoonal regimes in India, tropical Africa, and North America are provided with moisture from a large number of regions, highlighting the complexities of the global patterns of precipitation. Some very important contributions are also seen from relatively small areas of ocean, such as the Mediterranean Basin (important for Europe and North Africa) and the Red Sea, which provides water for a large area between the Gulf of Guinea and Indochina (summer) and between the African Great Lakes and Asia (winter). The geographical regions of Eurasia, North and South America, and Africa, and also the internationally important basins of the Mississippi, Amazon, Congo, and Yangtze Rivers, are also considered, as is the importance of terrestrial sources in monsoonal regimes. The role of atmospheric rivers, and particularly their relationship with extreme events, is discussed. Droughts can be caused by the reduced supply of water vapor from oceanic moisture source regions. Some of the implications of climate change for the hydrological cycle are also reviewed, including changes in water vapor concentrations, precipitation, soil moisture, and aridity. It is important to achieve a combined diagnosis of moisture sources using all available information, including stable water isotope measurements. A summary is given of the major research questions that remain unanswered, including (1) the lack of a full understanding of how moisture sources influence precipitation isotopes; (2) the stationarity of moisture sources over long periods; (3) the way in which possible changes in intensity (where evaporation exceeds precipitation to a greater of lesser degree), and the locations of the sources, (could) affect the distribution of continental precipitation in a changing climate; and (4) the role played by the main modes of climate variability, such as the North Atlantic Oscillation or the El NiñoâSouthern Oscillation, in the variability of the moisture source regions, as well as a full evaluation of the moisture transported by low-level jets and atmospheric rivers.Luis Gimeno would like to thank the
Spanish Ministry of Science and FEDER for their partial funding
of this research through the project MSM. A. Stohl was supported
by the Norwegian Research Council within the framework of the
WATERâSIP project. The work of Ricardo Trigo was partially
supported by the FCT (Portugal) through the ENAC project
(PTDC/AAC-CLI/103567/2008).2013-05-0
Advancing South American Water and Climate Science through Multidecadal Convection-Permitting Modeling
South Americaâs hydroclimate sustains vibrant communities and natural ecosystems of extraordinary biodiversity including the Andes Cordillera, and the Orinoco, La Plata, and Amazon basins. Global warming and land-use change are endangering ecosystem health, exacerbating hydrometeorological extremes, and threatening water and food security for millions of people on the continent (Castellanos et al. 2022). Reductions in rainfall and streamflow have been observed in southern Amazonia, the Cerrado region, northeast Brazil, and Chile (Muñoz et al. 2020; Garreaud et al. 2020; Espinoza et al. 2019; Fu et al. 2013). The increased aridity has affected agricultural yield, water supply for reservoirs, hydropower generation and impacted tens of millions of people in the large metropolitan areas of Sao Paulo, Rio de Janeiro, and Santiago de Chile (Nobre et al. 2016). Andean glaciers, an important source of water, have lost 30% of their area in the tropics and up to 60% in the southern Andesâthe highest glacier mass loss rates in the world (Braun et al. 2019; Dussaillant et al. 2019; Reinthaler et al. 2019; Masiokas et al. 2020; Fox-Kemper et al. 2021). Conversely, southeastern South America is facing increasing annual rainfall and intensification of heavy precipitation since the early twentieth century (Doyle et al. 2012; Barros et al. 2015; PabĂłn-Caicedo et al. 2020; Arias et al. 2021; GutiĂ©rrez et al. 2021; Morales-Yokobori 2021; Seneviratne et al. 2021). Extreme precipitation is projected to intensify throughout the continent (Arias et al. 2021; Seneviratne et al. 2021). This poses significant risk to people and infrastructure along the Andes and other mountainous areas, particularly for lower-income communities living in informal housing (Poveda et al. 2020; Ozturk et al. 2022).
The overarching goals of the SAAG community are twofold: improved physical understanding and application-relevant research. Two multidecadal convection-permitting simulations are at the heart of SAAG. The historical simulation will allow us to validate the model and better understand detailed hydroclimate features over the continent, while the future climate simulation will show the projected changes of these features in a warmer climate. Furthermore, SAAG scientists are working directly with local communities, so the information can be used for improved decision making. The specific goals and science questions are as follows; goal 1 Physical understanding: Advance insights and improve prediction of key hydroclimate processes in the region including projected changes in a changing climate and Goal 2, Provide information that can be used by local communities and stakeholders for better informed decision-making in a changing climate
Precipitation Recycling as a Mechanism for Ecoclimatological Stability Through Local and Non-Local Interactions
160 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 2006.Different physical mechanisms drive precipitation recycling in each region. In the Midwestern United States, evapotranspiration is not significantly affected by soil moisture anomalies, and there is a high recycling ratio during periods of reduced total precipitation. The reason is that, during periods of drier atmospheric conditions, transpiration will continue to provide moisture to the overlying atmosphere and contribute to total rainfall. Consequently, precipitation recycling variability in not driven by changes in evapotranspiration. Precipitable water, sensible heat and moisture fluxes are the main drivers of recycling variability in the Midwest. However, the drier soil moisture conditions over the NAMS region limit evapotranspiration, which will drive recycling variability. In this region, evapotranspiration becomes an important contribution to precipitation after Monsoon onset when total precipitation and evapotranspiration are highest. The precipitation recycling process in the NAMS region relocates moisture from regions of high evapotranspiration like the seasonally dry tropical forests of Mexico to drier regions downwind. During long monsoons, when soil moisture is abundant for a prolonged period of time, precipitation recycling significantly contributes to precipitation during periods of reduced total rainfall. In both the moisture abundant Midwestern region and the drier NAMS region, precipitation recycling plays an important role in maintaining a favorable hydroclimatological environment for vegetation.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD
The Location of LargeâScale Soil Moisture Anomalies Affects Moisture Transport and Precipitation Over Southeastern South America
Abstract Southeastern South America (SESA) is a highly productive agricultural region and a hot spot for landâatmosphere interactions. To evaluate the impact of dry soil moisture anomalies (SMAs) on SESA climate and the sensitivity of the regional climate response to the location of SMAs, we perform three experimental simulations using the Community Earth System Model (CESM) with prescribed dry SMAs over (a) SESA, (b) western SESA, and (c) eastern SESA. The dry SESA and eastern SESA simulations show widespread negative precipitation anomalies. In contrast, the dry western SESA simulation shows positive precipitation anomalies over northeastern Argentina, which are associated with the enhanced southward moisture flux coâlocated with the South American lowâlevel jet exit region. A composite analysis of extremely dry cases over western SESA using reanalysis data agrees with the findings from our CESM experiment. These findings have potential implications for subseasonal forecasting in this region
Projected changes in atmospheric river events in Arizona as simulated by global and regional climate models
Inland-penetrating atmospheric rivers (ARs) affect the United States Southwest and significantly contribute to cool season precipitation. In this study, we examine the results from an ensemble of dynamically downscaled simulations from the North American Regional Climate Change Assessment Program (NARCCAP) and their driving general circulation models (GCMs) in order to determine statistically significant changes in the intensity of the cool season ARs impacting Arizona and the associated precipitation. Future greenhouse gas emissions follow the A2 emission scenario from the Intergovernmental Panel on Climate Change Fourth Assessment Report simulations. We find that there is a consistent and clear intensification of the ARrelated water vapor transport in both the global and regional simulations which reflects the increase in water vapor content due to warmer atmospheric temperatures, according to the Clausius-Clapeyron relationship. However, the response of AR-related precipitation intensity to increased moisture flux and column-integrated water vapor is weak and no significant changes are projected either by the GCMs or the NARCCAP models. This lack of robust precipitation variations can be explained in part by the absence of meaningful changes in both the large-scale water vapor flux
convergence and the maximum positive relative vorticity in the GCMs. Additionally, some global models show a robust decrease in relative humidity which may also be responsible for the projected precipitation patterns.Universidad de Costa Rica/[805-B0-065]/UCR/Costa RicaUniversidad de Costa Rica/[805-B5-296]/UCR/Costa RicaNational Science Foundation/[1038938]/NSF/Estados UnidosNational Aeronautics and Space/[NNX14AD77G]NSF/Estados UnidosUCR::VicerrectorĂa de InvestigaciĂłn::Unidades de InvestigaciĂłn::Ciencias BĂĄsicas::Centro de Investigaciones GeofĂsicas (CIGEFI