64 research outputs found
Warm dark matter and the ionization history of the Universe
In warm dark matter scenarios structure formation is suppressed on small
scales with respect to the cold dark matter case, reducing the number of
low-mass halos and the fraction of ionized gas at high redshifts and thus,
delaying reionization. This has an impact on the ionization history of the
Universe and measurements of the optical depth to reionization, of the
evolution of the global fraction of ionized gas and of the thermal history of
the intergalactic medium, can be used to set constraints on the mass of the
dark matter particle. However, the suppression of the fraction of ionized
medium in these scenarios can be partly compensated by varying other
parameters, as the ionization efficiency or the minimum mass for which halos
can host star-forming galaxies. Here we use different data sets regarding the
ionization and thermal histories of the Universe and, taking into account the
degeneracies from several astrophysical parameters, we obtain a lower bound on
the mass of thermal warm dark matter candidates of keV, or keV for the case of sterile neutrinos non-resonantly produced in the early
Universe, both at 90\% confidence level.Comment: 15 pages, 5 figure
Shedding light on dark matter through 21 cm cosmology and reionization constraints
Durante las últimas décadas, nuestra comprensión del universo ha alcanzado un nivel remarcable, pudiendo probar predicciones cosmológicas con una precisión asombrosa. Las observaciones de los fotones del Fondo Cósmico de Microondas, junto con los estudios de catálogos galaxias, nos proporcionan una comprensión profunda de la geometría, los componentes y la cronología del cosmos. No obstante, la naturaleza de la Materia Oscura aún se desconoce. La composición, masa e interacciones de las partículas de Materia Oscura presentan uno de los enigmas más intrigantes de la cosmología actual. En esta tesis doctoral se estudian diferentes candidatos a Materia Oscura que pueden dejar un impacto en el proceso de formación de estructuras y en la evolución del Medio Intergaláctico. El análisis del estado de ionización del Medio Intergaláctico, su impacto en el Fondo Cósmico de Microondas y la señal cosmológica corrida al rojo de 21 cm, pueden proporcionar información reveladora sobre las propiedades de la Materia Oscura.
Esta tesis está organizada en tres partes. La Parte I está dedicada a una amplia introducción a los fundamentos que describen los temas considerados. Los conceptos básicos del paradigma cosmológico estándar, el universo Lambda-CDM, y un esbozo de la cronología cósmica se presentan en el Capítulo 1. El Capítulo 2 repasa el progreso histórico de las evidencias de la Materia Oscura, seguido de una discusión sobre el estado y la cuestiones del paradigma de la Materia Oscura Fría. Posteriormente se examinan dos escenarios alternativos de Materia Oscura no estándar: Materia Oscura Templada, con partículas con masas del orden del keV, y Materia Oscura Interactiva, donde las partículas de Materia Oscura interactúan a través de la dispersión elástica con fotones. Los efectos físicos, las motivaciones y las restricciones actuales de estos escenarios se estudian en detalle. El Capítulo 3 considera los Agujeros Negros Primordiales como otro candidato de Materia Oscura, repasando su mecanismo de formación, propiedades físicas y límites actuales en su abundancia. Se discuten ampliamente dos efectos principales: el acrecimiento de materia circundante y el incremento de las fluctuaciones a pequeña escala debido al ruido de Poisson, los cuales podrían dejar un impacto observacional en el Medio Intergaláctico. Los fundamentos de la señal cosmológica de 21 cm se revisan en el Capítulo 4, proporcionando las principales derivaciones a partir de un tratamiento de transferencia radiativa, resumiendo los procesos principales que pueden excitar y desexcitar átomos a través de la transición hiperfina en el hidrógeno, y discutiendo los detalles de sus fluctuaciones espaciales a través del espectro de potencias. También se examinan los diferentes métodos de observación por interferometría y experimentos de una única antena, el estado experimental actual y las perspectivas para la detección de la señal de 21 cm con futuros interferómetros. Finalmente, el Capítulo 5 está dedicado al tratamiento del Medio Intergaláctico y la evolución de su estado térmico y de ionización. Se discute el estudio de la Reionización en marcos globales y no homogéneos, así como los límites actuales sobre la evolución de la fracción ionizada por diferentes métodos. Se examinan los canales de enfriamiento y calentamiento relevantes en el medio neutro, junto con la evolución del flujo Lyman-alfa, finalizando con un bosquejo de las diferentes fases evolutivas del universo que se pueden estudiar mediante el estudio de la línea de 21 cm. La Parte II incluye siete artículos científicos originales publicados durante el desarrollo del doctorado, que constituyen el trabajo principal de esta tesis. Finalmente, la Parte III contiene un resumen de los principales resultados en castellano.During the last decades, our understanding of the universe has reached a remarkable level, being able to test cosmological predictions with an astonishing precision. Observations of relic photons of the Cosmic Microwave Background, together with galaxy surveys, provide us with a deep comprehension of the geometry, components and chronology of the cosmos. Nonetheless, the nature of the Dark Matter still remains unknown. The composition, mass and interactions of Dark Matter particles present one of the most intriguing conundrums in current cosmology. In this doctoral thesis, signatures of Dark Matter candidates which can leave an impact on the process of formation of structures and on the evolution of the Intergalactic Medium are studied. The analysis of the state of ionization of the Intergalactic Medium, its impact on the Cosmic Microwave Background, and the 21 cm redshifted cosmological signal, can provide insightful information regarding the properties of the Dark Matter.
This thesis is organized in three parts. Part I is devoted to a broad introduction to the fundamentals describing the state of the art of the topics considered. The basics of the standard cosmological paradigm, the Lambda-CDM universe, and a sketch of the cosmic timeline is presented in Chapter 1. Chapter 2 overviews the historical progress of evidences of Dark Matter, followed by a discussion of the status and small-scale issues of the Cold Dark Matter paradigm. Two alternative non-standard Dark Matter scenarios are then examined: Warm Dark Matter, whose particles with masses of the order of keV present free streaming, and Interacting Dark Matter, where Dark Matter particles interact via elastic scattering with photons, producing collisional damping. The physical effects, motivations and current constraints of these Dark Matter scenarios are studied in detail. Chapter 3 considers Primordial Black Holes as another Dark Matter candidate, overviewing their formation mechanism, physical properties and current constraints on their abundance. Two main effects are widely discussed: accretion of surrounding matter and the enhancement of small-scale fluctuations due to the Poisson shot noise, both of which could leave an observational impact in the Intergalactic Medium. The fundamentals of the 21 cm cosmological signal are reviewed in Chapter 4, providing the main derivations from a radiative transfer treatment, summarizing the main processes which can excite and de-excite atoms via the hyperfine transition in Hydrogen, and discussing the details of its spatial fluctuations via the power spectrum. The different observational tests by interferometry and single-dish experiments, current experimental status and prospects for the detection of the 21 cm signal with future interferometers are also examined. Finally, Chapter 5 is dedicated to the
treatment of the Intergalactic Medium and the evolution of its ionization and thermal state. The study of Reionization in global and inhomogeneous frameworks are discussed, as well as the current bounds on the evolution of the ionized fraction by different probes. The relevant cooling and heating channels in the neutral medium, together with the evolution of the Lyman-alpha flux are examined, finishing with a sketch of the different evolutionary phases of the universe that can be traced by studying the 21 cm line. Part II includes seven original scientific articles published during the development of the PhD, which constitute the main work of this thesis. Finally, Part III contains a summary of the main results in Spanish
A fresh look into the interacting dark matter scenario
The elastic scattering between dark matter particles and radiation represents
an attractive possibility to solve a number of discrepancies between
observations and standard cold dark matter predictions, as the induced
collisional damping would imply a suppression of small-scale structures. We
consider this scenario and confront it with measurements of the ionization
history of the Universe at several redshifts and with recent estimates of the
counts of Milky Way satellite galaxies. We derive a conservative upper bound on
the dark matter-photon elastic scattering cross section of
at ~CL, about one order of magnitude tighter than previous {constraints
from satellite number counts}. Due to the strong degeneracies with
astrophysical parameters, the bound on the dark matter-photon scattering cross
section derived here is driven by the estimate of the number of Milky Way
satellite galaxies. Finally, we also argue that future 21~cm probes could help
in disentangling among possible non-cold dark matter candidates, such as
interacting and warm dark matter scenarios. Let us emphasize that bounds of
similar magnitude to the ones obtained here could be also derived for models
with dark matter-neutrino interactions and would be as constraining as the
tightest limits on such scenarios.Comment: 23 pages, 7 figures. v2: matches the published version. Included
discussion on the applicability of constraints derived on dark matter-photon
interactions to dark matter-neutrino interactions. References adde
Boosting the 21 cm forest signals by the clumpy substructures
We study the contribution of subhalos to the 21 cm forest signal. The halos
can host the substructures and including the effects of those small scale
clumps can potentially boost the 21 cm optical depth in favor of detecting the
21 cm forest signals. We estimate the boost factor representing the ratio of
the optical depth due to the subhalo contribution and that due to the host halo
alone (without subhalos). Even though the optical depth boost factor is
negligible for a small host halo with the mass of order , the
subhalo contribution can enhance the optical depth by an order of magnitude for
a host halo of order . The resultant 21 cm absorption line
abundance which is obtained by integrating over the halo mass range relevant
for the 21 cm forest signal can be enhanced by up to of order due to the
substructures. The larger boost factor for a larger host halo would be of
particular interest for the 21 cm forest detection because the the contribution
of the larger host halos to the 21 cm forest signals is smaller due to their
higher temperature and less abundance than the smaller host halos. The subhalos
hence can well help the larger host halos more important for the signal
estimation which, without considering the subhalos, may not give appreciable
contribution to 21 cm forest signals.Comment: 14 pages, 7 figure
Current and future neutrino limits on the abundance of primordial black holes
Primordial black holes (PBHs) formed in the early Universe are sources of
neutrinos emitted via Hawking radiation. Such astrophysical neutrinos could be
detected at Earth and constraints on the abundance of comet-mass PBHs could be
derived from the null observation of this neutrino flux. Here, we consider
non-rotating PBHs and improve constraints using Super-Kamiokande neutrino data,
as well as we perform forecasts for next-generation neutrino (Hyper-Kamiokande,
JUNO, DUNE) and dark matter (DARWIN, ARGO) detectors, which we compare. For
PBHs less massive than g, PBHs would have
already evaporated by now, whereas more massive PBHs would still be present and
would constitute a fraction of the dark matter of the Universe. We consider
monochromatic and extended (log-normal) mass distributions, and a PBH mass
range spanning from g to g. Finally, we also compare
our results with previous ones in the literature.Comment: 35 pages, 9 figures, code publicly available at
https://github.com/vmmunoza/nuHawkHunte
Inferring halo masses with graph neural networks
Understanding the halo–galaxy connection is fundamental in order to improve our knowledge on the nature and
properties of dark matter. In this work, we build a model that infers the mass of a halo given the positions,
velocities, stellar masses, and radii of the galaxies it hosts. In order to capture information from correlations among
galaxy properties and their phase space, we use Graph Neural Networks (GNNs), which are designed to work with
irregular and sparse data. We train our models on galaxies from more than 2000 state-of-the-art simulations from
the Cosmology and Astrophysics with MachinE Learning Simulations project. Our model, which accounts for
cosmological and astrophysical uncertainties, is able to constrain the masses of the halos with a ∼0.2 dex accuracy.
Furthermore, a GNN trained on a suite of simulations is able to preserve part of its accuracy when tested on
simulations run with a different code that utilizes a distinct subgrid physics model, showing the robustness of our
method
- …