16 research outputs found

    Colour-assortative mating among populations of Tropheus moorii, a cichlid fish from Lake Tanganyika, East Africa

    No full text
    The species flocks of cichlid fishes in the East African Lakes Tanganyika, Malawi and Victoria are prime examples of adaptive radiation and explosive speciation. Several hundreds of endemic species have evolved in each of the lakes over the past several thousands to a few millions years. Sexual selection via colour-assortative mating has often been proposed as a probable causal factor for initiating and maintaining reproductive isolation. Here, we report the consequences of human-mediated admixis among differentially coloured populations of the endemic cichlid fish Tropheus moorii from several localities that have accidentally been put in sympatry in a small harbour bay in the very south of Lake Tanganyika. We analysed the phenotypes (coloration) and genotypes (mitochondrial control region and five microsatellite loci) of almost 500 individuals, sampled over 3 consecutive years. Maximum-likelihood-based parenthood analyses and Bayesian inference of population structure revealed that significantly more juveniles are the product of within-colour-morph matings than could be expected under the assumption of random mating. Our results clearly indicate a marked degree of assortative mating with respect to the different colour morphs. Therefore, we postulate that sexual selection based on social interactions and female mate choice has played an important role in the formation and maintenance of the different colour morphs in Tropheus, and is probably common in other maternally mouthbrooding cichlids as well

    Monogamy in the maternally mouthbrooding Lake Tanganyika cichlid fish Tropheus moorii

    No full text
    Supported by evidence for assortative mating and polygynandry, sexual selection through mate choice was suggested as the main force driving the evolution of colour diversity of haplochromine cichlids in Lakes Malawi and Victoria. The phylogenetically closely related tribe Tropheini of Lake Tanganyika includes the genus Tropheus, which comprises over 100 colour variants currently classified into six morphologically similar, polyphyletic species. To assess the potential for sexual selection in this sexually monochromatic maternal mouthbrooder, we used microsatellite-based paternity inference to investigate the mating system of Tropheus moorii. In contrast to haplochromines in Lake Malawi, multiple paternity is rare or even absent in broods of T. moorii. Eighteen of the 19 analysed families were consistent with genetic monogamy, while either a mutation or more than one sire explained the genotype of one offspring in another brood. We discuss the differences in breeding behaviour between T. moorii and the Lake Malawi haplochromines, and evaluate additional factors or alternatives to sexual selection as promoters of colour diversification. A preliminary survey of other Tropheini species suggested that multiple paternity is infrequent in the entire tribe

    African cichlid fish: a model system in adaptive radiation research

    No full text
    The African cichlid fish radiations are the most diverse extant animal radiations and provide a unique system to test predictions of speciation and adaptive radiation theory. The past few years have seen major advances in the phylogenetics, evolutionary biogeography and ecology of cichlid fish. Most of this work has concentrated on the most diverse radiations. Unfortunately, a large number of small radiations and ‘non-radiations’ have been overlooked, potentially limiting the contribution of the cichlid system to our understanding of speciation and adaptive radiation. I have reviewed the literature to identify 33 intralacustrine radiations and 76 failed radiations. For as many as possible I collected information on lake size, age and phylogenetic relationships. I use these data to address two questions: (i) whether the rate of speciation and the resulting species richness are related to temporal and spatial variation in ecological opportunity and (ii) whether the likelihood of undergoing adaptive radiation is similar for different African cichlid lineages. The former is a key prediction of the ecological theory of adaptive radiation that has been presumed true but remains untested for cichlid radiations. The second is based on the hypothesis that the propensity of cichlids to radiate is due to a key evolutionary innovation shared by all African cichlids. The evidence suggests that speciation rate declines through time as niches get filled up during adaptive radiation: young radiations and early stages of old radiations are characterized by high rates of speciation, whereas at least 0.5 Myr into a radiation speciation becomes a lot less frequent. The number of species in cichlid radiations increases with lake size, supporting the prediction that species diversity increases with habitat heterogeneity, but also with opportunity for isolation by distance. Finally, the data suggest that the propensity to radiate within lakes is a derived property that evolved during the evolutionary history of some African cichlids, and the appearance of which does not coincide with the appearance of proposed key innovations in morphology and life history
    corecore