19 research outputs found

    Geological Field Trips

    Get PDF
    This field trip guide organized in the framework of the Goldschmidt Conference 2013, held in Florence from August 25 to 30, 2013, is here presented. The two-days field trip, shows some of the many geological, naturalistic and cultural features in the Fiorano area (Modena), in which history, geology and passion for Ferrari come together in a perfect marriage. The first excursion day is dedicated to visit the Natural Reserve of Salse di Nirano, where the mud volcanoes, produced by the cold mud, salt water and hydrocarbons - mainly methane- can be observed. The second day is devoted to visit the Ferrari Museum and goes on at the Spezzano Castle, hosting the Ceramics Museum. Clays are, in fact, abundant in the hilly margin, where they form badlands, characteristic narrow crests washed out by running waters. In the Castle there is also a Balsamic Vinegar producing Consortium, it’s a peculiar and typical product of Modena province. The itinerary ends with the tour to Enzo Ferrari’s Birthplace at Modena

    Targeted mitochondrial therapy using MitoQ shows equivalent renoprotection to angiotensin converting enzyme inhibition but no combined synergy in diabetes.

    Get PDF
    Mitochondrial dysfunction is a pathological mediator of diabetic kidney disease (DKD). Our objective was to test the mitochondrially targeted agent, MitoQ, alone and in combination with first line therapy for DKD. Intervention therapies (i) vehicle (D); (ii) MitoQ (DMitoQ;0.6 mg/kg/day); (iii) Ramipril (DRam;3 mg/kg/day) or (iv) combination (DCoAd) were administered to male diabetic db/db mice for 12 weeks (n = 11-13/group). Non-diabetic (C) db/m mice were followed concurrently. No therapy altered glycaemic control or body weight. By the study end, both monotherapies improved renal function, decreasing glomerular hyperfiltration and albuminuria. All therapies prevented tubulointerstitial collagen deposition, but glomerular mesangial expansion was unaffected. Renal cortical concentrations of ATP, ADP, AMP, cAMP, creatinine phosphate and ATP:AMP ratio were increased by diabetes and mostly decreased with therapy. A higher creatine phosphate:ATP ratio in diabetic kidney cortices, suggested a decrease in ATP consumption. Diabetes elevated glucose 6-phosphate, fructose 6-phosphate and oxidised (NAD+ and NADP+) and reduced (NADH) nicotinamide dinucleotides, which therapy decreased generally. Diabetes increased mitochondrial oxygen consumption (OCR) at complex II-IV. MitoQ further increased OCR but decreased ATP, suggesting mitochondrial uncoupling as its mechanism of action. MitoQ showed renoprotection equivalent to ramipril but no synergistic benefits of combining these agents were shown

    Circulating levels of the soluble receptor for AGE (sRAGE) during escalating oral glucose dosages and corresponding isoglycaemic i.v. glucose infusions in individuals with and without type 2 diabetes

    No full text
    Postprandial glucose excursions are postulated to increase the risk for diabetes complications via the production of advanced glycation end products (AGEs). The soluble receptor of AGEs (sRAGE) likely acts as a decoy receptor, mopping up AGEs, diminishing their capacity for pro-inflammatory and pro-apoptotic signaling. Recent evidence suggests that AGEs and soluble receptor for AGEs (sRAGE) may be altered under postprandial and fasting conditions. Here, we investigated the effects of increasing oral glucose loads during oral glucose tolerance tests (OGTT) and matched isoglycaemic intravenous (i.v.) glucose infusions (IIGI) on circulating concentrations of sRAGE. Samples from eight individuals with type 2 diabetes and eight age-, gender-, and body mass index (BMI)-matched controls, all of whom underwent three differently dosed OGTTs (25 g, 75 g, and 125 g), and three matched IIGIs were utilised (NCT00529048). Serum concentrations of sRAGE were measured over 240 min during each test. For individuals with diabetes, sRAGE area under the curve (AUC) declined with increasing i.v. glucose dosages ( < 0.0001 for trend) and was lower during IIGI compared to OGTT at the 125 g dosage ( = 0.004). In control subjects, sRAGE AUC was only lower during IIGI compared to OGTT at the 25 g dose ( = 0.0015). sRAGE AUC was negatively correlated to AUC for the incretin hormone glucagon-like peptide -1 (GLP-1) during the 75 g OGTT and matched IIGI, but only in individuals with type 2 diabetes. These data suggest that gastrointestinal factors may play a role in regulating sRAGE concentrations during postprandial glucose excursions, thus warranting further investigation

    Globally elevating the AGE clearance receptor, OST48, does not protect against the development of diabetic kidney disease, despite improving insulin secretion

    Get PDF
    The accumulation of advanced glycation end products (AGEs) have been implicated in the development and progression of diabetic kidney disease (DKD). There has been interest in investigating the potential of AGE clearance receptors, such as oligosaccharyltransferase-48 kDa subunit (OST48) to prevent the detrimental effects of excess AGE accumulation seen in the diabetic kidney. Here the objective of the study was to increase the expression of OST48 to examine if this slowed the development of DKD by facilitating the clearance of AGEs. Groups of 8-week-old heterozygous knock-in male mice (n = 9-12/group) over-expressing the gene encoding for OST48, dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST+/-) and litter mate controls were randomised to either (i) no diabetes or (ii) diabetes induced via multiple low-dose streptozotocin and followed for 24 weeks. By the study end, global over expression of OST48 increased glomerular OST48. This facilitated greater renal excretion of AGEs but did not affect circulating or renal AGE concentrations. Diabetes resulted in kidney damage including lower glomerular filtration rate, albuminuria, glomerulosclerosis and tubulointerstitial fibrosis. In diabetic mice, tubulointerstitial fibrosis was further exacerbated by global increases in OST48. There was significantly insulin effectiveness, increased acute insulin secretion, fasting insulin concentrations and AUC observed during glucose tolerance testing in diabetic mice with global elevations in OST48 when compared to diabetic wild-type littermates. Overall, this study suggested that despite facilitating urinary-renal AGE clearance, there were no benefits observed on kidney functional and structural parameters in diabetes afforded by globally increasing OST48 expression. However, the improvements in insulin secretion seen in diabetic mice with global over-expression of OST48 and their dissociation from effects on kidney function warrant future investigation

    Alpha cell receptor for advanced glycation end products associate with glucagon expression in type 1 diabetes

    No full text
    Abstract Hypoglycemia in type 1 diabetes associates with changes in the pancreatic islet α cells, where the receptor for advanced glycation end products (RAGE) is highly expressed. This study compared islet RAGE expression in donors without diabetes, those at risk of, and those with type 1 diabetes. Laser-dissected islets were subject to RNA bioinformatics and adjacent pancreatic tissue were assessed by confocal microscopy. We found that islets from type 1 diabetes donors had differential expression of the RAGE gene (AGER) and its correlated genes, based on glucagon expression. Random forest machine learning revealed that AGER was the most important predictor for islet glucagon levels. Conversely, a generalized linear model identified that glucagon expression could be predicted by expression of RAGE signaling molecules, its ligands and enzymes that create or clear RAGE ligands. Confocal imaging co-localized RAGE, its ligands and signaling molecules to the α cells. Half of the type 1 diabetes cohort comprised of adolescents and a patient with history of hypoglycemia—all showed an inverse relationship between glucagon and RAGE. These data confirm an association between glucagon and islet RAGE, its ligands and signaling pathways in type 1 diabetes, which warrants functional investigation into a role for RAGE in hypoglycemia

    Short Duration Alagebrium Chloride Therapy Prediabetes Does Not Inhibit Progression to Autoimmune Diabetes in an Experimental Model

    No full text
    Mechanisms by which advanced glycation end products (AGEs) contribute to type 1 diabetes (T1D) pathogenesis are poorly understood. Since life-long pharmacotherapy with alagebrium chloride (ALT) slows progression to experimental T1D, we hypothesized that acute ALT therapy delivered prediabetes, may be effective. However, in female, non-obese diabetic (NODShiLt) mice, ALT administered prediabetes (day 50–100) did not protect against experimental T1D. ALT did not decrease circulating AGEs or their precursors. Despite this, pancreatic β-cell function was improved, and insulitis and pancreatic CD45.1(+) cell infiltration was reduced. Lymphoid tissues were unaffected. ALT pre-treatment, prior to transfer of primed GC98 CD8(+) T cell receptor transgenic T cells, reduced blood glucose concentrations and delayed diabetes, suggesting islet effects rather than immune modulation by ALT. Indeed, ALT did not reduce interferon-γ production by leukocytes from ovalbumin-pre-immunised NODShiLt mice and NODscid recipients given diabetogenic ALT treated NOD splenocytes were not protected against T1D. To elucidate β-cell effects, NOD-derived MIN6N8 β-cell major histocompatibility complex (MHC) Class Ia surface antigens were examined using immunopeptidomics. Overall, no major changes in the immunopeptidome were observed during the various treatments with all peptides exhibiting allele specific consensus binding motifs. As expected, longer MHC Class Ia peptides were captured bound to H-2D(b) than H-2K(b) under all conditions. Moreover, more 10–12 mer peptides were isolated from H-2D(b) after AGE modified bovine serum albumin (AGE-BSA) treatment, compared with bovine serum albumin (BSA) or AGE-BSA+ALT treatment. Proteomics of MIN6N8 cells showed enrichment of processes associated with catabolism, the immune system, cell cycling and presynaptic endocytosis with AGE-BSA compared with BSA treatments. These data show that short-term ALT intervention, given prediabetes, does not arrest experimental T1D but transiently impacts β-cell function

    Increased liver AGEs induce hepatic injury mediated through an OST48 pathway

    No full text
    The protein oligosaccharyltransferase-48 (OST48) is integral to protein N-glycosylation in the endoplasmic reticulum (ER) but is also postulated to act as a membrane localised clearance receptor for advanced glycation end-products (AGE). Hepatic ER stress and AGE accumulation are each implicated in liver injury. Hence the objective of this study was to increase the expression of OST48 and examine the effects on hepatic function and structure. Groups of 8 week old male mice (n = 10-12/group) over-expressing the gene for OST48, dolichyl-diphosphooligosaccharide-protein glycosyltransferase (DDOST+/-), were followed for 24 weeks, while randomised to diets either low or high in AGE content. By week 24 of the study, either increasing OST48 expression or consumption of high AGE diet impaired liver function and modestly increased hepatic fibrosis, but their combination significantly exacerbated liver injury in the absence of steatosis. DDOST+/- mice had increased both portal delivery and accumulation of hepatic AGEs leading to central adiposity, insulin secretory defects, shifted fuel usage to fatty and ketoacids, as well as hepatic glycogen accumulation causing hepatomegaly along with hepatic ER and oxidative stress. This study revealed a novel role of the OST48 and AGE axis in hepatic injury through ER stress, changes in fuel utilisation and glucose intolerance.</p
    corecore