8 research outputs found

    A Generational On-the-fly Garbage Collector for Java

    No full text
    An on-the-fly garbage collector does not stop the program threads to perform the collection. Instead, the collector executes in a separate thread (or process) in parallel to the program. On-the-fly collectors are useful for multithreaded applications running on multiprocessor servers, where it is important to fully utilize all processors and provide even response time, especially for systems for which stopping the threads is a costly operation. In this work, we report on the incorporation of generations into an on-the-fly garbage collector. The incorporation is non-trivial since an on-the-y collector avoids explicit synchronization with the program threads. To the best of our knowledge this incorporation has not been tried before. We have implemented the collector for a prototype Java Virtual Machine on AIX, and measured its performance on a 4-way multiprocessor. As for other generational collectors, an on-the-fly generational collector has the potential for reducing the overall running time and working set of an application by concentrating collection efforts on the young objects. However, in contrast to other generational collectors, on-the-fly collectors do not move the objects; thus, there is no segregation between the old and the young objects. Furthermore, on-the-fly collectors do not stop the threads, so there is no extra benefit for the short pauses obtained by generational collection. Nevertheless, comparing our on-the-fly collector with and without generations, it turns out that the generational collector performs better for most applications. The best reduction in overall running time for the benchmarks we measured was 25%. However, there were some benchmarks for which it had no e ect and one for which the overall running time increased by 4%

    Thread-local heaps for Java

    No full text

    Implementing an On-the-fly Garbage Collector for Java

    No full text
    Java uses garbage collection (GC) for the automatic reclamation of computer memory no longer required by a running application. GC implementations for Java Virtual Machines (JVM) are typically designed for single processor machines, and do not necessarily perform well for a server program with many threads running on a multiprocessor. We designed and implemented an on-the-fly GC, based on the algorithm of Doligez, Leroy and Gonthier [13, 12] (DLG), for Java in this environment. An on-the-fly collector, a collector that does not stop the program threads, allows all processors to be utilized during collection and provides uniform response times. We extended and adapted DLG for Java (e.g., adding support for weak references) and for modern multiprocessors without sequential consistency, and added performance improvements (e.g., to keep track of the objects remaining to be traced). We compared the performance of our implementation with stop-the-world mark-sweep GC. Our measurements show th..
    corecore