127 research outputs found
Peyronie's disease - a perspective on the disease and the long-term results of radiotherapy
From 1966 to 1988, 98 of 108 patients with symptomatic Peyronie's disease received radiotherapy at our institution. In 11 of 61 patients (18%) who attended the clinic regularly for follow-up for longer than a year, new lesions distinct from the original lesions developed. This confirms that there is progression of the disease in a substantial number of cases after treatment. Long-term follow-up over an average of 111,5 months was achieved by means of a questionnaire in 47 of the 98 cases (48%). Forty-one of these patients (87,2%) had sexual intercourse after radiation. Twenty-eight of the 41 (68,3%) still have intercourse. Their average age at present is 59,6 years while the average age of the 13 patients (31,7%) not having intercourse is 70,9 years. The decline in sexual activity is thus age-related. Twenty-one of 25 patients (84%) experienced relief from pain, and angulation of the penis improved in 17 of 44 patients (38,6%) after radiotherapy. Radiotherapy may therefore be of benefit to patients with active Peyronie's disease and should be investigated in a randoIIlised controlled study
Functional Characterization of a Newly Identified Group B Streptococcus Pullulanase Eliciting Antibodies Able to Prevent Alpha-Glucans Degradation
Streptococcal pullulanases have been recently proposed as key components of the metabolic machinery involved in bacterial adaptation to host niches. By sequence analysis of the Group B Streptococcus (GBS) genome we found a novel putative surface exposed protein with pullulanase activity. We named such a protein SAP. The sap gene is highly conserved among GBS strains and homologous genes, such as PulA and SpuA, have been described in other pathogenic streptococci. The SAP protein contains two N-terminal carbohydrate-binding motifs, followed by a catalytic domain and a C-terminal LPXTG cell wall-anchoring domain. In vitro analysis revealed that the recombinant form of SAP is able to degrade α-glucan polysaccharides, such as pullulan, glycogen and starch. Moreover, NMR analysis showed that SAP acts as a type I pullulanase. Studies performed on whole bacteria indicated that the presence of α-glucan polysaccharides in culture medium up-regulated the expression of SAP on bacterial surface as confirmed by FACS analysis and confocal imaging. Deletion of the sap gene resulted in a reduced capacity of bacteria to grow in medium containing pullulan or glycogen, but not glucose or maltose, confirming the pivotal role of SAP in GBS metabolism of α-glucans. As reported for other streptococcal pullulanases, we found specific anti-SAP antibodies in human sera from healthy volunteers. Investigation of the functional role of anti-SAP antibodies revealed that incubation of GBS in the presence of sera from animals immunized with SAP reduced the capacity of the bacterium to degrade pullulan. Of interest, anti-SAP sera, although to a lower extent, also inhibited Group A Streptococcus pullulanase activity. These data open new perspectives on the possibility to use SAP as a potential vaccine component inducing functional cross-reacting antibodies interfering with streptococcal infections
Automated Docking Screens: A Feasibility Study
Molecular docking is themost practical approach to leverage protein structure for ligand discovery, but the technique retains important liabilities that make it challenging to deploy on a large scale. We have therefore created an expert system, DOCKBlaster, to investigate the feasibility of full automation. The method requires a PDB code, sometimes with a ligand structure, and from that alone can launch a full screen of large libraries. A critical feature is self-assessment, which estimates the anticipated reliability of the automated screening results using pose fidelity and enrichment. Against common benchmarks, DOCKBlaster recapitulates the crystal ligand pose within 2 A ̊ rmsd 50-60 % of the time; inferior to an expert, but respectrable. Half the time the ligand also ranked among the top 5 % of 100 physically matched decoys chosen on the fly. Further tests were undertaken culminating in a study of 7755 eligible PDB structures. In 1398 cases, the redocked ligand ranked in the top 5 % of 100 property-matched decoys while also posing within 2 A ̊ rmsd, suggesting that unsupervised prospective docking is viable. DOCK Blaster is available a
WISDOM-II: Screening against multiple targets implicated in malaria using computational grid infrastructures
<p>Abstract</p> <p>Background</p> <p>Despite continuous efforts of the international community to reduce the impact of malaria on developing countries, no significant progress has been made in the recent years and the discovery of new drugs is more than ever needed. Out of the many proteins involved in the metabolic activities of the <it>Plasmodium </it>parasite, some are promising targets to carry out rational drug discovery.</p> <p>Motivation</p> <p>Recent years have witnessed the emergence of grids, which are highly distributed computing infrastructures particularly well fitted for embarrassingly parallel computations like docking. In 2005, a first attempt at using grids for large-scale virtual screening focused on plasmepsins and ended up in the identification of previously unknown scaffolds, which were confirmed in vitro to be active plasmepsin inhibitors. Following this success, a second deployment took place in the fall of 2006 focussing on one well known target, dihydrofolate reductase (DHFR), and on a new promising one, glutathione-S-transferase.</p> <p>Methods</p> <p>In silico drug design, especially vHTS is a widely and well-accepted technology in lead identification and lead optimization. This approach, therefore builds, upon the progress made in computational chemistry to achieve more accurate <it>in silico </it>docking and in information technology to design and operate large scale grid infrastructures.</p> <p>Results</p> <p>On the computational side, a sustained infrastructure has been developed: docking at large scale, using different strategies in result analysis, storing of the results on the fly into MySQL databases and application of molecular dynamics refinement are MM-PBSA and MM-GBSA rescoring. The modeling results obtained are very promising. Based on the modeling results, <it>In vitro </it>results are underway for all the targets against which screening is performed.</p> <p>Conclusion</p> <p>The current paper describes the rational drug discovery activity at large scale, especially molecular docking using FlexX software on computational grids in finding hits against three different targets (PfGST, PfDHFR, PvDHFR (wild type and mutant forms) implicated in malaria. Grid-enabled virtual screening approach is proposed to produce focus compound libraries for other biological targets relevant to fight the infectious diseases of the developing world.</p
Determination of sin2 θeff w using jet charge measurements in hadronic Z decays
The electroweak mixing angle is determined with high precision from measurements of the mean difference between forward and backward hemisphere charges in hadronic decays of the Z. A data sample of 2.5 million hadronic Z decays recorded over the period 1990 to 1994 in the ALEPH detector at LEP is used. The mean charge separation between event hemispheres containing the original quark and antiquark is measured for bb̄ and cc̄ events in subsamples selected by their long lifetimes or using fast D*'s. The corresponding average charge separation for light quarks is measured in an inclusive sample from the anticorrelation between charges of opposite hemispheres and agrees with predictions of hadronisation models with a precision of 2%. It is shown that differences between light quark charge separations and the measured average can be determined using hadronisation models, with systematic uncertainties constrained by measurements of inclusive production of kaons, protons and A's. The separations are used to measure the electroweak mixing angle precisely as sin2 θeff w = 0.2322 ± 0.0008(exp. stat.) ±0.0007(exp. syst.) ± 0.0008(sep.). The first two errors are due to purely experimental sources whereas the third stems from uncertainties in the quark charge separations
- …