262 research outputs found

    Influence of the pair coherence on the charge tunneling through a quantum dot connected to a superconducting lead

    Full text link
    We analyze the charge transport through a single level quantum dot coupled to a normal (N) and superconducting (S) leads where the electron pairs exist either as the coherent (for temperatures below T_c) or incoherent objects (in a region T_c < T < T*). This situation can be achieved in practice if one uses the high T_c superconducting material where various precursor effects have been observed upon approaching TcT_{c} from above. Without restricting to any particular microscopic mechanism we investigate some qualitative changes of the nonequilibrium charge current caused by the electron pair coherence.Comment: 7 pages, 9 figure

    Meservey-Tedrow-Fulde effect in a quantum dot embedded between metallic and superconducting electrodes

    Full text link
    Magnetic field applied to the quantum dot coupled between one metallic and one superconducting electrode can produce a similar effect as has been experimentally observed by Meservey, Tedrow and Fulde [Phys. Rev. Lett. 25, 1270 (1970)] for the planar normal metal -- superconductor junctions. We investigate the tunneling current and show that indeed the square root singularities of differential conductance exhibit the Zeeman splitting near the gap edge features V = +/- Delta/e. Since magnetic field affects also the in-gap states of quantum dot it furthermore imposes a hyperfine structure on the anomalous (subgap) Andreev current which has a crucial importance for a signature of the Kondo resonance.Comment: 7 pages, 8 figure

    Flow equation approach to the linear response theory of superconductors

    Full text link
    We apply the flow equation method for studying the current-current response function of electron systems with the pairing instability. To illustrate the specific scheme in which the flow equation procedure determines the two-particle Green's functions we reproduce the standard response kernel of the BCS superconductor. We next generalize this non-perturbative treatment considering the pairing field fluctuations. Our study indicates that the residual diamagnetic behavior detected above the transition temperature in the cuprate superconductors can originate from the noncondensed preformed pairs.Comment: 12 pages, 4 figure

    Unconventional particle-hole mixing in the systems with strong superconducting fluctuations

    Full text link
    Development of the STM and ARPES spectroscopies enabled to reach the resolution level sufficient for detecting the particle-hole entanglement in superconducting materials. On a quantitative level one can characterize such entanglement in terms of the, so called, Bogoliubov angle which determines to what extent the particles and holes constitute the spatially or momentum resolved excitation spectra. In classical superconductors, where the phase transition is related to formation of the Cooper pairs almost simultaneously accompanied by onset of their long-range phase coherence, the Bogoliubov angle is slanted all the way up to the critical temperature Tc. In the high temperature superconductors and in superfluid ultracold fermion atoms near the Feshbach resonance the situation is different because of the preformed pairs which exist above Tc albeit loosing coherence due to the strong quantum fluctuations. We discuss a generic temperature dependence of the Bogoliubov angle in such pseudogap state indicating a novel, non-BCS behavior. For quantitative analysis we use a two-component model describing the pairs coexisting with single fermions and study their mutual feedback effects by the selfconsistent procedure originating from the renormalization group approach.Comment: 4 pages, 4 figure

    Pairing of bosons in the condensed state of the boson-fermion model

    Get PDF
    A two component model of negative U centers coupled with the Fermi sea of itinerant fermions is discussed in connection with high-temperature superconductivity of cuprates, and superfluidity of atomic fermions. We examine the phase transition and the condensed state of this boson-fermion model (BFM) beyond the ordinary mean-field approximation in two and three dimensions. No pairing of fermions and no condensation are found in two-dimensions for any symmetry of the order parameter. The expansion in the strength of the order parameter near the transition yields no linear homogeneous term in the Ginzburg-Landau-Gor'kov equation and a zero upper critical field in any-dimensional BFM, which indicates that previous mean-field discussions of the model are flawed. Normal and anomalous Green's functions are obtained diagrammatically and analytically in the condensed state of a simplest version of 3D BFM. A pairing of bosons analogous to the Cooper pairing of fermions is found. There are three coupled condensates in the model, described by the off-diagonal single-particle boson, pair-fermion and pair-boson fields. These results negate the common wisdom that the boson-fermion model is adequately described by the BCS theory at weak coupling.Comment: 7 pages, 4 figure
    • 

    corecore