42 research outputs found

    El tratado "de anathomia" ("c". 1280) de Juan Gil de Zamora ("c". 1241-"c". 1320)

    Get PDF
    Uno de los capítulos menos conocidos de la historia de la medicina medieval española es el correspondiente a la literatura médica generada en Castilla durante el siglo XIII. Evidentemente, las cortes de Alfonso X y sus sucesores fueron centros de innegable actividad científica, pero apenas se conoce producción médica escrita. Recientemente, uno de nosotros ha realizado la edición crítica de la Historia naturalis de Juan Gil de Zamora, que había permanecido, hasta ahora, manuscrita (1). Se trata de una enciclopedia científica en la que por orden alfabético, y con muy distinta extensión, se abordan materias comprendidas dentro del amplio esquema macrocosmo-microcosmo. Por desgracia, sólo contamos con 1 67 entradas correspondientes a la letra A, desde abeston, que es la primera, hasta azurium que es la última conservada (2). Ello nos da idea de la extensión y ambición con que fue proyectada la obra, cuya transcripción completa comprende más de mil folios niecanografiabos. Una de las entradas más extensas corresponde a la voz Anathomia cuya edición constituye el objeto de la presente publicación. Daremos, eri primer lugar, una breve noticia del autor y, a continuación, trazarenios las coordenadas en las que enmarcar su actividad científica y el tratado de anathomi

    El mundo médico de la "Historia naturalis" (ca. 1275-1296) de Juan Gil de Zamora

    Get PDF
    El artículo describe los autores y obras médicas utilizadas por el franciscano Juan Gil de Zarnora en su Historia naturalis,una enciclopedia científica redactada entre 1275 y antes de 1296, probablemente en Zamora. Juan Gil utilizó ampliamente el Canon de Avicena, el Compendium medicine de Gilbertus de Aquila (Anglicus) y la literatura médica salernitana, contribuyendo con ello a su difusión entre los medios intelectuales bajomedievales de Castilla. Dicha difusión no estuvo exenta de problemas

    El tratado "de anathomia" ("c". 1280) de Juan Gil de Zamora ("c". 1241-"c". 1320)

    Get PDF
    Uno de los capítulos menos conocidos de la historia de la medicina medieval española es el correspondiente a la literatura médica generada en Castilla durante el siglo XIII. Evidentemente, las cortes de Alfonso X y sus sucesores fueron centros de innegable actividad científica, pero apenas se conoce producción médica escrita. Recientemente, uno de nosotros ha realizado la edición crítica de la Historia naturalis de Juan Gil de Zamora, que había permanecido, hasta ahora, manuscrita (1). Se trata de una enciclopedia científica en la que por orden alfabético, y con muy distinta extensión, se abordan materias comprendidas dentro del amplio esquema macrocosmo-microcosmo. Por desgracia, sólo contamos con 1 67 entradas correspondientes a la letra A, desde abeston, que es la primera, hasta azurium que es la última conservada (2). Ello nos da idea de la extensión y ambición con que fue proyectada la obra, cuya transcripción completa comprende más de mil folios niecanografiabos. Una de las entradas más extensas corresponde a la voz Anathomia cuya edición constituye el objeto de la presente publicación. Daremos, eri primer lugar, una breve noticia del autor y, a continuación, trazarenios las coordenadas en las que enmarcar su actividad científica y el tratado de anathomi

    El mundo médico de la Historia naturalis (ca. 1275-1296) de Juan Gil de Zamora

    Get PDF
    El articulo describe los autores y obras médicas utilizadas por el franciscano Juan Gil de Zarnora en su Historia naturalis,una enciclopedia científica redactada entre 1275 y antes de 1296, probablemente en Zamora. Juan Gil utilizó ampliamente el Canon de Avicena, el Compendium medicine de Gilbertus de Aquila (Anglicus) y la literatura médica salernitana, contribuyendo con ello a su difusión entre los medios intelectuales bajomedievales de Castilla. Dicha difusión no estuvo exenta de problemas

    Continuous flow photoassisted CO2 methanation

    Full text link
    [EN] Photoassisted CO2 methanation using Ni-Al2O3/SiO2 as a photoresponsive catalyst has been carried out at 225 degrees C under continuous flow conditions achieving up to 3.5% conversion of CO2 with complete selectivity to CH4 under 2327 W m(-2) irradiation for a contact time of 1.3 s. An apparent quantum yield of 0.11 was estimated for the continuous flow process.Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2015-65169-CO2-R1) is gratefully acknowledged. J. A. thanks the Universitat Politecnica de Valencia for the post-doctoral research associate contract.Albero-Sancho, J.; Domínguez Torres, E.; Corma Canós, A.; García Gómez, H. (2017). Continuous flow photoassisted CO2 methanation. Sustainable Energy & Fuels. 1(6):1303-1307. doi:10.1039/c7se00246gS1303130716Nozik, A. J., & Miller, J. (2010). Introduction to Solar Photon Conversion. Chemical Reviews, 110(11), 6443-6445. doi:10.1021/cr1003419Arakawa, H., Aresta, M., Armor, J. N., Barteau, M. A., Beckman, E. J., Bell, A. T., … Tumas, W. (2001). Catalysis Research of Relevance to Carbon Management:  Progress, Challenges, and Opportunities. Chemical Reviews, 101(4), 953-996. doi:10.1021/cr000018sLi, K., An, X., Park, K. H., Khraisheh, M., & Tang, J. (2014). A critical review of CO2 photoconversion: Catalysts and reactors. Catalysis Today, 224, 3-12. doi:10.1016/j.cattod.2013.12.006Rönsch, S., Schneider, J., Matthischke, S., Schlüter, M., Götz, M., Lefebvre, J., … Bajohr, S. (2016). Review on methanation – From fundamentals to current projects. Fuel, 166, 276-296. doi:10.1016/j.fuel.2015.10.111Hoekman, S. K., Broch, A., Robbins, C., & Purcell, R. (2010). CO2 recycling by reaction with renewably-generated hydrogen. International Journal of Greenhouse Gas Control, 4(1), 44-50. doi:10.1016/j.ijggc.2009.09.012Pan, P.-W., & Chen, Y.-W. (2007). Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation. Catalysis Communications, 8(10), 1546-1549. doi:10.1016/j.catcom.2007.01.006Sastre, F., Puga, A. V., Liu, L., Corma, A., & García, H. (2014). Complete Photocatalytic Reduction of CO2 to Methane by H2 under Solar Light Irradiation. Journal of the American Chemical Society, 136(19), 6798-6801. doi:10.1021/ja500924tNeațu, Ștefan, Maciá-Agulló, J., & Garcia, H. (2014). Solar Light Photocatalytic CO2 Reduction: General Considerations and Selected Bench-Mark Photocatalysts. International Journal of Molecular Sciences, 15(4), 5246-5262. doi:10.3390/ijms15045246Zhao, Y., Chen, G., Bian, T., Zhou, C., Waterhouse, G. I. N., Wu, L.-Z., … Zhang, T. (2015). Defect-Rich Ultrathin ZnAl-Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2to CO with Water. Advanced Materials, 27(47), 7824-7831. doi:10.1002/adma.201503730Varghese, O. K., Paulose, M., LaTempa, T. J., & Grimes, C. A. (2009). High-Rate Solar Photocatalytic Conversion of CO2and Water Vapor to Hydrocarbon Fuels. Nano Letters, 9(2), 731-737. doi:10.1021/nl803258pMeng, X., Wang, T., Liu, L., Ouyang, S., Li, P., Hu, H., … Ye, J. (2014). Photothermal Conversion of CO2into CH4with H2over Group VIII Nanocatalysts: An Alternative Approach for Solar Fuel Production. Angewandte Chemie, 126(43), 11662-11666. doi:10.1002/ange.201404953Jia, J., O’Brien, P. G., He, L., Qiao, Q., Fei, T., Reyes, L. M., … Ozin, G. A. (2016). Visible and Near-Infrared Photothermal Catalyzed Hydrogenation of Gaseous CO2over Nanostructured Pd@Nb2O5. Advanced Science, 3(10), 1600189. doi:10.1002/advs.201600189Ren, J., Ouyang, S., Xu, H., Meng, X., Wang, T., Wang, D., & Ye, J. (2016). Targeting Activation of CO2and H2over Ru-Loaded Ultrathin Layered Double Hydroxides to Achieve Efficient Photothermal CO2Methanation in Flow-Type System. Advanced Energy Materials, 7(5), 1601657. doi:10.1002/aenm.201601657Kocemba, I., Nadajczyk, J., Góralski, J., & Szynkowska, M. (2010). Photoreduction of carbon dioxide with hydrogen using temperature programmed method. Polish Journal of Chemical Technology, 12(3), 1-2. doi:10.2478/v10026-010-0022-1Gilmore, K., & Seeberger, P. H. (2014). Continuous Flow Photochemistry. The Chemical Record, 14(3), 410-418. doi:10.1002/tcr.201402035Sicardi, S., Baldi, G., van Dierendonck, L., & Smeets, T. (1988). Comparison between batch and continuous tubular reactors used for the study of reaction kinetics in heterogeneous systems. Chemical Engineering Science, 43(8), 1843-1848. doi:10.1016/0009-2509(88)87051-9Albero, J., Garcia, H., & Corma, A. (2016). Temperature Dependence of Solar Light Assisted CO2 Reduction on Ni Based Photocatalyst. Topics in Catalysis, 59(8-9), 787-791. doi:10.1007/s11244-016-0550-xYung, T.-Y., Huang, L.-Y., Chan, T.-Y., Wang, K.-S., Liu, T.-Y., Chen, P.-T., … Liu, L.-K. (2014). Synthesis and characterizations of Ni-NiO nanoparticles on PDDA-modified graphene for oxygen reduction reaction. Nanoscale Research Letters, 9(1), 444. doi:10.1186/1556-276x-9-444Kasztelan, S., Grimblot, J., Bonnelle, J. P., Payen, E., Toulhoat, H., & Jacquin, Y. (1983). Preparation of Co-Mo-γAl2O3 and Ni-Mo-γAl2O3 catalysts by ph regulation of molybdenum solution. characterization of supported species and hydrogenation activities. Applied Catalysis, 7(1), 91-112. doi:10.1016/0166-9834(83)80241-3Venezia, A. M., Bertoncello, R., & Deganello, G. (1995). X-ray photoelectron spectroscopy investigation of pumice-supported nickel catalysts. Surface and Interface Analysis, 23(4), 239-247. doi:10.1002/sia.740230408Feng, Y., Yang, W., & Chu, W. (2015). A Study of CO2Methanation over Ni-Based Catalysts Supported by CNTs with Various Textural Characteristics. International Journal of Chemical Engineering, 2015, 1-7. doi:10.1155/2015/79538

    Non-conventional yeasts as hosts for heterologous protein production

    Get PDF
    Creative Commons-Attribution-Non-Commercial-Share Alike 3.0 Spain.-- et al.Yeasts are an attractive group of lower eukaryotic microorganisms, some of which are used in several industrial processes that include brewing, baking and the production of a variety of biochemical compounds. More recently, yeasts have been developed as host organisms for the production of foreign (heterologous) proteins. Saccharomyces ccrevisiae has usually been the yeast of choice, but an increasing number of alternative non-Saccharomyces yeasts has now become accessible for modern molecular genetics techniques. Some of them exhibit certain favourable traits such as high-level secretion or very strong and tightly regulated promoters, offering significant advantages over traditional bakers' yeast. In the present work, the current status of Kluyveromyces lactis, Yarrowia lipolytica, Hansennla polymorpha and Picliia pastoris (the best-known alternative yeast systems) is reviewed. The advantages and limitations of these systems are discussed in relation to S. cerevisiae. © Springer-Verlag 1998.This work was partially supported by grants from the CICYT (BIO92-0304 and BIO 95-0518) and EU (BIO4-CT96-0003).Peer Reviewe

    Non-conventional yeasts as hosts for heterologous protein production

    Get PDF
    Yeasts are an attractive group of lower eukaryotic microorganisms, some of which are used in several industrial processes that include brewing, baking and the production of a variety of biochemical compounds. More recently, yeasts have been developed as host organisms for the production of foreign (heterologous) proteins. Saccharomyces cerevisiae has usually been the yeast of choice, but an increasing number of alternative non-Saccharomyces yeasts has now become accessible for modern molecular genetics techniques. Some of them exhibit certain favourable traits such as high-level secretion or very strong and tightly regulated promoters, offering significant advantages over traditional bakers’ yeast. In the present work, the current status of Kluyveromyces lactis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris (the best-known alternative yeast systems) is reviewed. The advantages and limitations of these systems are discussed in relation to S. cerevisiae

    Bounds on the possible evolution of the Gravitational Constant from Cosmological Type-Ia Supernovae

    Get PDF
    Recent high-redshift Type Ia supernovae results can be used to set new bounds on a possible variation of the gravitational constant GG. If the local value of GG at the space-time location of distant supernovae is different, it would change both the kinetic energy release and the amount of 56^{56}Ni synthesized in the supernova outburst. Both effects are related to a change in the Chandrasekhar mass MChG3/2M_{Ch} \propto G^{-3/2}. In addition, the integrated variation of GG with time would also affect the cosmic evolution and therefore the luminosity distance relation. We show that the later effect in the magnitudes of Type Ia supernovae is typically several times smaller than the change produced by the corresponding variation of the Chandrasekhar mass. We investigate in a consistent way how a varying GG could modify the Hubble diagram of Type Ia supernovae and how these results can be used to set upper bounds to a hypothetical variation of GG. We find G/G_0 \la 1.1 and G'/G \la 10^{-11} yr^{-1} at redshifts z0.5z\simeq 0.5. These new bounds extend the currently available constrains on the evolution of GG all the way from solar and stellar distances to typical scales of Gpc/Gyr, i.e. by more than 15 orders of magnitudes in time and distance.Comment: 9 pages, 4 figures, Phys. Rev. D. in pres

    Layered zeolitic materials: an approach to designing versatile functional solids

    Full text link
    Relevant layered zeolites have been considered in this perspective article from the point of view of the synthesis methodologies, materials characterization and catalytic implications, considering the unique physico-chemical characteristics of lamellar materials. The potential of layered zeolitic precursors to generate novel lamellar accessible zeolites through swelling, intercalation, pillarization, delamination and/ or exfoliation treatments is studied, showing the chemical, functional and structural versatility exhibited by layered zeolites. Recent approaches based on the assembly of zeolitic nanosheets which act as inorganic structural units through the use of dual structural directing agents, the selective modification of germanosilicates and the direct generation of lamellar hybrid organic inorganic aluminosilicates are also considered to obtain layered solids with well-defined functionalities. The catalytic applications of the layered zeolites are also highlighted, pointing out the high accessibility and reactivity of active sites present in the lamellar framework.The authors thank financial support to Spanish Government by Consolider-Ingenio MULTICAT CSD2009-00050, MAT2011-29020-C02-01 and Severo Ochoa Excellence Program SEV-2012-0267.Díaz Morales, UM.; Corma Canós, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions. 43(27):10292-10316. https://doi.org/10.1039/c3dt53181cS10292103164327Mallouk, T. E., & Gavin, J. A. (1998). Molecular Recognition in Lamellar Solids and Thin Films. Accounts of Chemical Research, 31(5), 209-217. doi:10.1021/ar970038pSuslick, K. S., & Price, G. J. (1999). APPLICATIONS OF ULTRASOUND TO MATERIALS CHEMISTRY. Annual Review of Materials Science, 29(1), 295-326. doi:10.1146/annurev.matsci.29.1.295Du, X., Zhang, D., Gao, R., Huang, L., Shi, L., & Zhang, J. (2013). Design of modular catalysts derived from NiMgAl-LDH@m-SiO2 with dual confinement effects for dry reforming of methane. Chemical Communications, 49(60), 6770. doi:10.1039/c3cc42418aLi, H., Zhang, D., Maitarad, P., Shi, L., Gao, R., Zhang, J., & Cao, W. (2012). In situ synthesis of 3D flower-like NiMnFe mixed oxides as monolith catalysts for selective catalytic reduction of NO with NH3. Chemical Communications, 48(86), 10645. doi:10.1039/c2cc34758jWang, H., Zhang, D., Yan, T., Wen, X., Shi, L., & Zhang, J. (2012). Graphene prepared via a novel pyridine–thermal strategy for capacitive deionization. Journal of Materials Chemistry, 22(45), 23745. doi:10.1039/c2jm35340gZhang, D., Yan, T., Shi, L., Peng, Z., Wen, X., & Zhang, J. (2012). Enhanced capacitive deionization performance of graphene/carbon nanotube composites. Journal of Materials Chemistry, 22(29), 14696. doi:10.1039/c2jm31393fRavishankar, R., Joshi, P. N., Tamhankar, S. S., Sivasanker, S., & Shiralkar, V. P. (1998). A Novel Zeolite MCM-22: Sorption Characteristics. Adsorption Science & Technology, 16(8), 607-621. doi:10.1177/026361749801600803Roth, W. J., & Dorset, D. L. (2011). Expanded view of zeolite structures and their variability based on layered nature of 3-D frameworks. Microporous and Mesoporous Materials, 142(1), 32-36. doi:10.1016/j.micromeso.2010.11.007Roth, W. J., & Čejka, J. (2011). Two-dimensional zeolites: dream or reality? Catalysis Science & Technology, 1(1), 43. doi:10.1039/c0cy00027bLeonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910Lawton, S. L., Fung, A. S., Kennedy, G. J., Alemany, L. B., Chang, C. D., Hatzikos, G. H., … Woessner, D. E. (1996). Zeolite MCM-49:  A Three-Dimensional MCM-22 Analogue Synthesized byin SituCrystallization. The Journal of Physical Chemistry, 100(9), 3788-3798. doi:10.1021/jp952871eKennedy, G. J., Lawton, S. L., Fung, A. S., Rubin, M. K., & Steuernagel, S. (1999). Multinuclear MAS NMR studies of zeolites MCM-22 and MCM-49. Catalysis Today, 49(4), 385-399. doi:10.1016/s0920-5861(98)00444-1Santos Marques, A. L., Fontes Monteiro, J. L., & Pastore, H. O. (1999). Static crystallization of zeolites MCM-22 and MCM-49. Microporous and Mesoporous Materials, 32(1-2), 131-145. doi:10.1016/s1387-1811(99)00099-2Vuono, D., Pasqua, L., Testa, F., Aiello, R., Fonseca, A., Korányi, T. I., & Nagy, J. B. (2006). Influence of NaOH and KOH on the synthesis of MCM-22 and MCM-49 zeolites. Microporous and Mesoporous Materials, 97(1-3), 78-87. doi:10.1016/j.micromeso.2006.07.015Corma, A., Corell, C., Pérez-Pariente, J., Guil, J. M., Guil-López, R., Nicolopoulos, S., … Vallet-Regi, M. (1996). Adsorption and catalytic properties of MCM-22: The influence of zeolite structure. Zeolites, 16(1), 7-14. doi:10.1016/0144-2449(95)00084-4Ravishankar, R., Sen, T., Ramaswamy, V., Soni, H. S., Ganapathy, S., & Sivasanker., S. (1994). Synthesis, Characterization and Catalytic properties of Zeolite PSH-3/MCM-22. Zeolites and Related Microporous Materials: State of the Art 1994 - Proceedings of the 10th International Zeolite Conference, Garmisch-Partenkirchen, Germany, 17-22 July 1994, 331-338. doi:10.1016/s0167-2991(08)64131-2Güray, I., Warzywoda, J., Baç, N., & Sacco, A. (1999). Synthesis of zeolite MCM-22 under rotating and static conditions. Microporous and Mesoporous Materials, 31(3), 241-251. doi:10.1016/s1387-1811(99)00075-xWang, Y.-M., Shu, X.-T., & He, M.-Y. (2001). 02-P-34 - Static synthesis of zeolite MCM-22. Zeolites and Mesoporous Materials at the dawn of the 21st century, Proceedings of the 13th International Zeolite Conference,, 194. doi:10.1016/s0167-2991(01)81373-2Chan, I. Y., Labun, P. A., Pan, M., & Zones, S. I. (1995). High-resolution electron microscopy characterization of SSZ-25 zeolite. Microporous Materials, 3(4-5), 409-418. doi:10.1016/0927-6513(94)00050-6Camblor, M. A., Corma, A., Díaz-Cabañas, M.-J., & Baerlocher, C. (1998). Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25. The Journal of Physical Chemistry B, 102(1), 44-51. doi:10.1021/jp972319kAguilar, J., Corma, A., Melo, F. V., & Sastre, E. (2000). Alkylation of biphenyl with propylene using acid catalysts. Catalysis Today, 55(3), 225-232. doi:10.1016/s0920-5861(99)00250-3Camblor, M. A., Corell, C., Corma, A., Díaz-Cabañas, M.-J., Nicolopoulos, S., González-Calbet, J. M., & Vallet-Regí, M. (1996). A New Microporous Polymorph of Silica Isomorphous to Zeolite MCM-22. Chemistry of Materials, 8(10), 2415-2417. doi:10.1021/cm960322vNicolopoulos, S., González-Calbet, J. M., Vallet-Regi, M., Camblor, M. A., Corell, C., Corma, A., & Diaz-Cabañas, M. J. (1997). Use of Electron Microscopy and Microdiffraction for Zeolite Framework Comparison. Journal of the American Chemical Society, 119(45), 11000-11005. doi:10.1021/ja963703iMillini, R., Perego, G., Parker, W. O., Bellussi, G., & Carluccio, L. (1995). Layered structure of ERB-1 microporous borosilicate precursor and its intercalation properties towards polar molecules. Microporous Materials, 4(2-3), 221-230. doi:10.1016/0927-6513(95)00013-yKhouw, C. B., & Davis, M. E. (1995). Catalytic Activity of Titanium Silicates Synthesized in the Presence of Alkali-Metal and Alkaline-Earth Ions. Journal of Catalysis, 151(1), 77-86. doi:10.1006/jcat.1995.1010Wu, P., Tatsumi, T., Komatsu, T., & Yashima, T. (2001). A Novel Titanosilicate with MWW Structure: II. Catalytic Properties in the Selective Oxidation of Alkenes. Journal of Catalysis, 202(2), 245-255. doi:10.1006/jcat.2001.3278Wu, P., Tatsumi, T., Komatsu, T., & Yashima, T. (2001). A Novel Titanosilicate with MWW Structure. I. Hydrothermal Synthesis, Elimination of Extraframework Titanium, and Characterizations. The Journal of Physical Chemistry B, 105(15), 2897-2905. doi:10.1021/jp002816sWu, P., & Tatsumi, T. (2001). Extremely high trans selectivity of Ti-MWW in epoxidation of alkenes with hydrogen peroxide. Chemical Communications, (10), 897-898. doi:10.1039/b101426iSasidharan, M., Wu, P., & Tatsumi, T. (2002). Epoxidation of α,β-Unsaturated Carbonyl Compounds over Various Titanosilicates. Journal of Catalysis, 205(2), 332-338. doi:10.1006/jcat.2001.3440Wu, P., & Tatsumi, T. (2002). Uniquetrans-Selectivity of Ti-MWW in Epoxidation ofcis/trans-Alkenes with Hydrogen Peroxide. The Journal of Physical Chemistry B, 106(4), 748-753. doi:10.1021/jp0120965Wu, P., & Tatsumi, T. (2002). Preparation of B-free Ti-MWW through reversible structural conversion. Chemical Communications, (10), 1026-1027. doi:10.1039/b201170kFan, W., Wu, P., Namba, S., & Tatsumi, T. (2004). A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie International Edition, 43(2), 236-240. doi:10.1002/anie.200352723Kim, S. J., Jung, K.-D., & Joo, O.-S. (2004). Synthesis and Characterization of Gallosilicate Molecular Sieve with the MCM-22 Framework Topology. Journal of Porous Materials, 11(4), 211-218. doi:10.1023/b:jopo.0000046348.23346.ddTeixeira-Neto, A. A., Marchese, L., Landi, G., Lisi, L., & Pastore, H. O. (2008). [V,Al]-MCM-22 catalyst in the oxidative dehydrogenation of propane. Catalysis Today, 133-135, 1-6. doi:10.1016/j.cattod.2007.11.012Wu, Y., Wang, J., Liu, P., Zhang, W., Gu, J., & Wang, X. (2010). Framework-Substituted Lanthanide MCM-22 Zeolite: Synthesis and Characterization. Journal of the American Chemical Society, 132(51), 17989-17991. doi:10.1021/ja107633jIkeda, T., Akiyama, Y., Oumi, Y., Kawai, A., & Mizukami, F. (2004). The Topotactic Conversion of a Novel Layered Silicate into a New Framework Zeolite. Angewandte Chemie International Edition, 43(37), 4892-4896. doi:10.1002/anie.200460168Dorset, D. L., & Kennedy, G. J. (2004). Crystal Structure of MCM-65:  An Alternative Linkage of Ferrierite Layers. The Journal of Physical Chemistry B, 108(39), 15216-15222. doi:10.1021/jp040305qTsunoji, N., Ikeda, T., Ide, Y., Sadakane, M., & Sano, T. (2012). Synthesis and characteristics of novel layered silicates HUS-2 and HUS-3 derived from a SiO2–choline hydroxide–NaOH–H2O system. Journal of Materials Chemistry, 22(27), 13682. doi:10.1039/c2jm31872eIkeda, T., Kayamori, S., Oumi, Y., & Mizukami, F. (2010). Structure Analysis of Si-Atom Pillared Lamellar Silicates Having Micropore Structure by Powder X-ray Diffraction. The Journal of Physical Chemistry C, 114(8), 3466-3476. doi:10.1021/jp912026nXu, H., Yang, B., Jiang, J., Jia, L., He, M., & Wu, P. (2013). Post-synthesis and adsorption properties of interlayer-expanded PLS-4 zeolite. Microporous and Mesoporous Materials, 169, 88-96. doi:10.1016/j.micromeso.2012.10.005Schreyeck, L., Caullet, P., Mougenel, J.-C., Guth, J.-L., & Marler, B. (1995). A layered microporous aluminosilicate precursor of FER-type zeolite. Journal of the Chemical Society, Chemical Communications, (21), 2187. doi:10.1039/c39950002187Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1996). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 6(5-6), 259-271. doi:10.1016/0927-6513(96)00032-6Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1997). A new layered (alumino) silicate and its transformation into a FER-type material by calcination. Progress in Zeolite and Microporous Materials, Preceedings of the 11th International Zeolite Conference, 1949-1956. doi:10.1016/s0167-2991(97)80659-3Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie International Edition, 39(8), 1499-1501. doi:10.1002/(sici)1521-3773(20000417)39:83.0.co;2-0Ikeda, T., Kayamori, S., & Mizukami, F. (2009). Synthesis and crystal structure of layered silicate PLS-3 and PLS-4 as a topotactic zeolite precursor. Journal of Materials Chemistry, 19(31), 5518. doi:10.1039/b905415dYang, B., Jiang, J., Xu, H., Liu, Y., Peng, H., & Wu, P. (2013). Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors. Applied Catalysis A: General, 455, 107-113. doi:10.1016/j.apcata.2013.01.024Burton, A., Accardi, R. J., Lobo, R. F., Falcioni, M., & Deem, M. W. (2000). MCM-47:  A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chemistry of Materials, 12(10), 2936-2942. doi:10.1021/cm000243qMillini, R., Carluccio, L. C., Carati, A., Bellussi, G., Perego, C., Cruciani, G., & Zanardi, S. (2004). ERS-12: A new layered tetramethylammonium silicate composed by ferrierite layers. Microporous and Mesoporous Materials, 74(1-3), 59-71. doi:10.1016/j.micromeso.2004.06.007García, R., Gómez-Hortigüela, L., Díaz, I., Sastre, E., & Pérez-Pariente, J. (2008). Synthesis of Materials Containing Ferrierite Layers Using Quinuclidine and 1-Benzyl-1-methylpyrrolidine as Structure-Directing Agents. An Experimental and Computational Study†. Chemistry of Materials, 20(3), 1099-1107. doi:10.1021/cm702098jAndrews, S. J., Papiz, M. Z., McMeeking, R., Blake, A. J., Lowe, B. M., Franklin, K. R., … Harding, M. M. (1988). Piperazine silicate (EU 19): the structure of a very small crystal determined with synchrotron radiation. Acta Crystallographica Section B Structural Science, 44(1), 73-77. doi:10.1107/s0108768187009820Rollmann, L. D., Schlenker, J. L., Lawton, S. L., Kennedy, C. L., & Kennedy, G. J. (2002). MCM-69, a novel layered analogue of EU-19. Microporous and Mesoporous Materials, 53(1-3), 179-193. doi:10.1016/s1387-1811(02)00338-4Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie International Edition, 43(37), 4933-4937. doi:10.1002/anie.200460085Araki, T. (1980). Crystal structure of a cesium aluminosilicate, Cs[AlSi5O12]. Zeitschrift für Kristallographie, 152(3-4), 207-213. doi:10.1524/zkri.1980.152.3-4.207Hughes, R. W., & Weller, M. T. (2002). The structure of the CAS type zeolite, Cs4[Al4Si20O48] by high-resolution powder neutron diffraction MAS and NMR. Microporous and Mesoporous Materials, 51(3), 189-196. doi:10.1016/s1387-1811(01)00476-0Marler, B., Camblor, M. A., & Gies, H. (2006). The disordered structure of silica zeolite EU-20b, obtained by topotactic condensation of the piperazinium containing layer silicate EU-19. Microporous and Mesoporous Materials, 90(1-3), 87-101. doi:10.1016/j.micromeso.2005.10.047Blake, A. J., Franklin, K. R., & Lowe, B. M. (1988). Preparation and properties of piperazine silicate (EU-19) and a silica polymorph (EU-20). Journal of the Chemical Society, Dalton Transactions, (10), 2513. doi:10.1039/dt9880002513Lagaly, G. (1986). Interaction of alkylamines with different types of layered compounds. Solid State Ionics, 22(1), 43-51. doi:10.1016/0167-2738(86)90057-3Roth, W. J., Kresge, C. T., Vartuli, J. C., Leonowicz, M. E., Fung, A. S., & McCullen, S. B. (1995). MCM-36: The first pillared molecular sieve with zeoliteproperties. Catalysis by Microporous Materials, Proceedings of ZEOCAT ’95, 301-308. doi:10.1016/s0167-2991(06)81236-xEder, F., He, Y., Nivarthy, G., & Lercher, J. A. (2010). Sorption of alkanes on novel pillared zeolites; comparison between MCM-22 and MCM-36. Recueil des Travaux Chimiques des Pays-Bas, 115(11-12), 531-535. doi:10.1002/recl.19961151114He, Y. ., Nivarthy, G. ., Eder, F., Seshan, K., & Lercher, J. . (1998). Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36. Microporous and Mesoporous Materials, 25(1-3), 207-224. doi:10.1016/s1387-1811(98)00210-8Corma, A., Fornés, V., Martı́nez-Triguero, J., & Pergher, S. B. (1999). Delaminated Zeolites: Combining the Benefits of Zeolites and Mesoporous Materials for Catalytic Uses. Journal of Catalysis, 186(1), 57-63. doi:10.1006/jcat.1999.2503J. Roth, W., C. Vartuli, J., & T. Kresge, C. (2000). Characterization of mesoporous molecular sieves: differences between M41s and pillared layered zeolites. Studies in Surface Science and Catalysis, 501-508. doi:10.1016/s0167-2991(00)80251-7Roth, W. J., & Kresge, C. T. (2011). Intercalation chemistry of NU-6(1), the layered precursor to zeolite NSI, leading to the pillared zeolite MCM-39(Si). Microporous and Mesoporous Materials, 144(1-3), 158-161. doi:10.1016/j.micromeso.2011.04.006Barth, J.-O., Kornatowski, J., & Lercher*, J. A. (2002). Synthesis of new MCM-36 derivatives pillared with alumina or magnesia–alumina. Journal of Materials Chemistry, 12(2), 369-373. doi:10.1039/b104824bBARTH, J., JENTYS, A., ILIOPOULOU, E., VASALOS, I., & LERCHER, J. (2004). Novel derivatives of MCM-36 as catalysts for the reduction of nitrogen oxides from FCC regenerator flue gas streams. Journal of Catalysis, 227(1), 117-129. doi:10.1016/j.jcat.2004.06.021Kornatowski, J., Barth, J.-O., & Lercher, J. A. (2005). New modifications of layered MCM-36 molecular sieve pillared with various mixed oxides: facts and perspectives. Studies in Surface Science and Catalysis, 349-356. doi:10.1016/s0167-2991(05)80228-9Barth, J.-O., Jentys, A., Kornatowski, J., & Lercher, J. A. (2004). Control of Acid−Base Properties of New Nanocomposite Derivatives of MCM-36 by Mixed Oxide Pillaring. Chemistry of Materials, 16(4), 724-730. doi:10.1021/cm0349607Schenkel, R., Barth, J. O., Kornatowski, J., Jentys, A., & Lercher, J. A. (2004). Adsorption of methanol on MCM-36 derivatives with strong acid and base sites. Studies in Surface Science and Catalysis, 1598-1605. doi:10.1016/s0167-2991(04)80683-9Maheshwari, S., Jordan, E., Kumar, S., Bates, F. S., Penn, R. L., Shantz, D. F., & Tsapatsis, M. (2008). Layer Structure Preservation during Swelling, Pillaring, and Exfoliation of a Zeolite Precursor. Journal of the American Chemical Society, 130(4), 1507-1516. doi:10.1021/ja077711iLiu, D., Bhan, A., Tsapatsis, M., & Al Hashimi, S. (2010). Catalytic Behavior of Brønsted Acid Sites in MWW and MFI Zeolites with Dual Meso- and Microporosity. ACS Catalysis, 1(1), 7-17. doi:10.1021/cs100042rCorma, A. (1995). Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions. Chemical Reviews, 95(3), 559-614. doi:10.1021/cr00035a006Wu, P., Kan, Q., Wang, D., Xing, H., Jia, M., & Wu, T. (2005). The synthesis of Mo/H-MCM-36 catalyst and its catalytic behavior in methane non-oxidative aromatization. Catalysis Communications, 6(7), 449-454. doi:10.1016/j.catcom.2005.04.002Lallemand, M., Rusu, O. A., Dumitriu, E., Finiels, A., Fajula, F., & Hulea, V. (2008). NiMCM-36 and NiMCM-22 catalysts for the ethylene oligomerization: Effect of zeolite texture and nickel cations/acid sites ratio. Applied Catalysis A: General, 338(1-2), 37-43. doi:10.1016/j.apcata.2007.12.024Lallemand, M., Rusu, O. A., Dumitriu, E., Finiels, A., Fajula, F., & Hulea, V. (2008). Ni-MCM-36 and Ni-MCM-22 catalysts for the ethylene oligomerization. Studies in Surface Science and Catalysis, 1139-1142. doi:10.1016/s0167-2991(08)80087-0Aguilar, J., Pergher, S. B. C., Detoni, C., Corma, A., Melo, F. V., & Sastre, E. (2008). Alkylation of biphenyl with propylene using MCM-22 and ITQ-2 zeolites. Catalysis Today, 133-135, 667-672. doi:10.1016/j.cattod.2007.11.057Zhang, Y., Xing, H., Yang, P., Wu, P., Jia, M., Sun, J., & Wu, T. (2007). Alkylation of benzene with propylene over MCM-36: A comparative study with MCM-22 zeolite synthesized from the same precursors. Reaction Kinetics and Catalysis Letters, 90(1), 45-52. doi:10.1007/s11144-007-4972-0Meloni, D., Dumitriu, E., Monaci, R., & Solinas, V. (2008). Liquid-phase alkylation of phenol with t-Butanol over H-MCM-22, H-ITQ-2 and H-MCM-36 catalysts. Studies in Surface Science and Catalysis, 1111-1114. doi:10.1016/s0167-2991(08)80080-8Dumitriu, E., Fechete, I., Caullet, P., Kessler, H., Hulea, V., Chelaru, C., … Bourdon, X. (2002). Conversion of aromatic hydrocarbons over MCM-22 and MCM-36 catalysts. Impact of Zeolites and other Porous Materials on the new Technologies at the Beginning of the New Millennium, Proceedings of the 2nd International FEZA (Federation of the European Zeolite Associations) Conference, 951-958. doi:10.1016/s0167-2991(02)80123-9Lacarriere, A., Luck, F., Świerczyński, D., Fajula, F., & Hulea, V. (2011). Methanol to hydrocarbons over zeolites with MWW topology: Effect of zeolite texture and acidity. Applied Catalysis A: General, 402(1-2), 208-217. doi:10.1016/j.apcata.2011.06.003Barth, J., Jentys, A., & Lercher, J. A. (2004). Development of novel catalytic additives for the in situ reduction of NOx from fluid catalytic cracking units. Recent Advances in the Science and Technology of Zeolites and Related Materials, Proceedings of the 14th International Zeolite Conference, 2441-2448. doi:10.1016/s0167-2991(04)80509-3Ding, J., Liu, H., Yuan, P., Shi, G., & Bao, X. (2013). Catalytic Properties of a Hierarchical Zeolite Synthesized from a Natural Aluminosilicate Mineral without the Use of a Secondary Mesoscale Template. ChemCatChem, 5(8), 2258-2269. doi:10.1002/cctc.201300049Zhu, J., Cui, Y., Wang, Y., & Wei, F. (2009). Direct synthesis of hierarchical zeolite from a natural layered material. Chemical Communications, (22), 3282. doi:10.1039/b902661dWang, Y. J., Tang, Y., Wang, X. D., Dong, A. G., Shan, W., & Gao, Z. (2001). Fabrication of Hierarchically Structured Zeolites through Layer-by-Layer Assembly of Zeolite Nanocrystals on Diatom Templates. Chemistry Letters, 30(11), 1118-1119. doi:10.1246/cl.2001.1118Rhodes, K. H., Davis, S. A., Caruso, F., Zhang, B., & Mann, S. (2000). Hierarchical Assembly of Zeolite Nanoparticles into Ordered Macroporous Monoliths Using Core−Shell Building Blocks. Chemistry of Materials, 12(10), 2832-2834. doi:10.1021/cm000438yCorma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System

    Aproximación al mundo de las abejas en los autores grecolatinos

    No full text
    corecore