22 research outputs found

    Role of SHP-1 in in vivo CD8+ T cell responses to antigenic stimulation

    Get PDF
    The immune system has immense clinical potential for combating pathogens and tumourigenesis. More specifically, CD8+ T cells have the ability to eradicate infected and malignant cells. In light of this, the factors that may influence the speed at which antigen is detected, the magnitude of the response and the efficiency of pathogen/tumour clearance require ongoing investigation. The src homology 2 (SH2) domain containing protein tyrosine phosphatase-1 (SHP-1) is a negative regulator of T cell signalling pathways. Prior to this study, in vitro data had demonstrated that SHP-1 deficient CD8+ T cells possess a hyper-responsive phenotype when stimulated with cognate peptide. Therefore, the remit of this study was to establish whether this in vitro observation has an in vivo relevance. In order to explore the role of SHP-1 in an in vivo setting, CD8+ T cells from the spontaneous mouse mutant, motheaten, which lacks SHP-1 expression were utilised. Specifically, CD8+ T cells were purified from motheaten (SHP-1 deficient) and control (SHP-1 sufficient) mice and adoptively transferred to recipient mice where they could be studied. This study demonstrates that following adoptive transfer, naive SHP-1 deficient CD8+ T cells exhibit an enhanced in vivo expansion upon antigenic stimulation, which notably results in the killing of more peptide labelled target cells. Furthermore, SHP-1 deficient CD8+T cells also exhibit an enhanced memory response upon antigenic challenge. These findings suggest that modulation of SHP-1 expression may improve the efficacy of tumour immunotherapy strategies, which use antigen specific CD8+ T cells to eradicate malignant cells in tumour-bearing patients. In further support of potentially targetting SHP-1 expression in CD8+ T cells used in immunotherapy strategies, it has been importantly shown in this study that mice receiving SHP-1 deficient CD8+ T cells exhibit an enhanced protection against pulmonary tumour formation when compared to mice receiving SHP-1 sufficient CD8+ T cells

    HLA class I-redirected anti-tumour CD4+T-cells require a higher TCR binding affinity for optimal activity than CD8+T-cells

    Get PDF
    CD4+ T helper cells are a valuable component of the immune response towards cancer. Unfortunately, natural tumour-specific CD4+ T-cells occur in low frequency, express relatively low affinity T-cell receptors (TCRs) and show poor reactivity towards cognate antigen. In addition, the lack of human leukocyte antigen (HLA) class II expression on most cancers dictates that these cells are often unable to respond to tumour cells directly. These deficiencies can be overcome by transducing primary CD4+ T-cells with tumour-specific HLA class I-restricted TCRs prior to adoptive transfer. The lack of help from the coreceptor CD8 glycoprotein in CD4+ cells might result in these cells requiring a different optimal TCR binding affinity. Here we compared primary CD4+ and CD8+ T-cells expressing wildtype and a range of affinity-enhanced TCRs specific for the HLA A*0201-restricted NY-ESO-1- and gp100 tumour antigens. Our major findings are: (i) redirected primary CD4+ T-cells expressing TCRs of sufficiently high affinity exhibit a wide range of effector functions, including cytotoxicity, in response to cognate peptide; and, (ii) optimal TCR binding affinity is higher in CD4+ T-cells than CD8+ T-cells. These results indicate that the CD4+ T-cell component of current adoptive therapies using TCRs optimised for CD8+ T-cells is below par and that there is room for substantial improvement. This article is protected by copyright. All rights reserved

    T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones

    Get PDF
    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8+ or CD4+ polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein–Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer

    Purity of transferred CD8+ T cells is crucial for safety and efficacy of combinatorial tumor immunotherapy in the absence of SHP-1

    Get PDF
    Adoptive transfer of tumor-specific cytotoxic T cells is a promising advance in cancer therapy. Similarly, checkpoint inhibition has shown striking clinical results in some patients. Here we combine adoptive cell transfer with ablation of the checkpoint protein Src homology 2-domain-containing phosphatase 1 (SHP-1, Ptpn6). Naturally occurring motheaten mice lack SHP-1 and do not survive weaning due to extensive immunopathology. To circumvent this limitation, we created a novel SHP-1(null) mouse that is viable up to 12 weeks of age by knocking out IL1r1. Using this model, we demonstrate that the absence of SHP-1 augments the ability of adoptively transferred CD8(+) T cells to control tumor growth. This therapeutic effect was only observed in situations where T-cell numbers were limited, analogous to clinical settings. However, adoptive transfer of non-CD8(+) SHP-1(null) hematopoietic cells resulted in lethal motheaten-like pathology, indicating that systemic inhibition of SHP-1 could have serious adverse effects. Despite this caveat, our findings support the development of SHP-1 inhibition strategies in human T cells to complement adoptive transfer therapies in the clinic

    Structural mechanism underpinning cross-reactivity of a CD8(+) T-cell clone that recognizes a peptide derived from human telomerase reverse transcriptase

    Get PDF
    T-cell cross-reactivity is essential for effective immune surveillance but has also been implicated as a pathway to autoimmunity. Previous studies have demonstrated that T-cell receptors (TCRs) that focus on a minimal motif within the peptide are able to facilitate a high level of T-cell cross-reactivity. However, the structural database shows that most TCRs exhibit less focused antigen binding involving contact with more peptide residues. To further explore the structural features that allow the clonally expressed TCR to functionally engage with multiple peptide-major histocompatibility complexes (pMHCs), we examined the ILA1 CD8(+) T-cell clone that responds to a peptide sequence derived from human telomerase reverse transcriptase. The ILA1 TCR contacted its pMHC with a broad peptide binding footprint encompassing spatially distant peptide residues. Despite the lack of focused TCR-peptide binding, the ILA1 T-cell clone was still cross-reactive. Overall, the TCR-peptide contacts apparent in the structure correlated well with the level of degeneracy at different peptide positions. Thus, the ILA1 TCR was less tolerant of changes at peptide residues that were at, or adjacent to, key contact sites. This study provides new insights into the molecular mechanisms that control T-cell cross-reactivity with important implications for pathogen surveillance, autoimmunity, and transplant rejection

    Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination

    Get PDF
    Antigen recognition by the T-cell receptor (TCR) is a hallmark of the adaptive immune system. When the TCR engages a peptide bound to the restricting major histocompatibility complex molecule (pMHC), it transmits a signal via the associated CD3 complex. How the extracellular antigen recognition event leads to intracellular phosphorylation remains unclear. Here, we used single-molecule localization microscopy to quantify the organization of TCR–CD3 complexes into nanoscale clusters and to distinguish between triggered and nontriggered TCR–CD3 complexes. We found that only TCR–CD3 complexes in dense clusters were phosphorylated and associated with downstream signaling proteins, demonstrating that the molecular density within clusters dictates signal initiation. Moreover, both pMHC dose and TCR–pMHC affinity determined the density of TCR–CD3 clusters, which scaled with overall phosphorylation levels. Thus, TCR–CD3 clustering translates antigen recognition by the TCR into signal initiation by the CD3 complex, and the formation of dense signaling-competent clusters is a process of antigen discrimination

    Comparison of peptide-major histocompatibility complex tetramers and dextramers for the identification of antigen-specific T cells

    Get PDF
    Fluorochrome-conjugated peptide–major histocompatibility complex (pMHC) multimers are widely used for flow cytometric visualization of antigen-specific T cells. The most common multimers, streptavidin–biotin-based ‘tetramers’, can be manufactured readily in the laboratory. Unfortunately, there are large differences between the threshold of T cell receptor (TCR) affinity required to capture pMHC tetramers from solution and that which is required for T cell activation. This disparity means that tetramers sometimes fail to stain antigen-specific T cells within a sample, an issue that is particularly problematic when staining tumour-specific, autoimmune or MHC class II-restricted T cells, which often display TCRs of low affinity for pMHC. Here, we compared optimized staining with tetramers and dextramers (dextran-based multimers), with the latter carrying greater numbers of both pMHC and fluorochrome per molecule. Most notably, we find that: (i) dextramers stain more brightly than tetramers; (ii) dextramers outperform tetramers when TCR–pMHC affinity is low; (iii) dextramers outperform tetramers with pMHC class II reagents where there is an absence of co-receptor stabilization; and (iv) dextramer sensitivity is enhanced further by specific protein kinase inhibition. Dextramers are compatible with current state-of-the-art flow cytometry platforms and will probably find particular utility in the fields of autoimmunity and cancer immunology

    Antigen specificity determines the pro- or antitumoral nature of CD8+ T cells

    No full text
    Although CD8+ T cells are usually considered antitumoral, several recent studies report that the cells can also promote tumor progression. Using the melanoma cell line B16 as a murine model of pulmonary metastasis, we examined whether the pro- versus antitumoral effects of CD8+ T cells relate to their Ag specificity. Results of the study indicate that although CD8+ T cells specific for tumor Ags promote tumor rejection, CD8+ T cells specific for unrelated Ags promote tumor progression. We found the effect to be partly attributable to CD8+ T cells dampening effective antitumor NK cell responses. Notably, activation of CD8+ T cell responses by an unrelated stimulus, in this case infection with influenza virus, increased the number of pulmonary tumor nodules. These data provide a rationale for previously unexplained data identifying contrasting roles for CD8+ T cells in tumor progression

    Loss of Src homology region 2 domain-containing protein tyrosine phosphatase-1 increases CD8+ T cell-APC conjugate formation and is associated with enhanced in vivo CTL function

    No full text
    Extensive evidence has been accumulated to implicate the intracellular protein tyrosine phosphatase, Src homology region 2 domain-containing protein tyrosine phosphatase-1 (SHP-1), as a negative regulator of TCR-signaling thresholds. Specifically, T cells from the SHP-1-deficient mouse, motheaten, exhibit a hyperproliferative phenotype when activated by cognate peptide-pulsed APCs. However, the cellular basis for this phenotype has not been fully explained. Using the intracellular fluorescent dye, CFSE, we show that a greater proportion of motheaten vs control naive CD8(+) T cells undergo cell division when activated by peptide-pulsed APCs. Furthermore, there is a greater likelihood of TCRs on SHP-1-deficient vs control T cells binding to peptide/MHC ligands on APCs when using TCR down-regulation as an indirect measure of TCR engagement. In addition, T cell-APC conjugate assays provide direct evidence that a greater proportion of SHP-1-deficient T cells are capable of forming stable conjugates with APCs and this may explain, at least in part, their hyperproliferative response to TCR-triggered stimulation. The physiological relevance of the combined in vitro observations is demonstrated by the significantly enhanced in vivo expansion and CTL capacity generated in mice receiving adoptively transferred SHP-1-deficient naive CD8(+) T cells when compared with control T cells

    A novel tumor antigen derived from enhanced degradation of Bax protein in human cancers

    No full text
    Cancer cells frequently exhibit defects in apoptosis, which contribute to increased survival and chemotherapeutic resistance. For example, genetic mutations or abnormal proteasomal degradation can reduce expression of Bax which limits apoptosis. In cancers where abnormal proteasomal degradation of Bax occurs, we hypothesized that Bax peptides that bind to human leukocyte antigen (HLA) class I molecules would be generated for presentation to CD8+ T cells. To test this hypothesis, we generated T cells against pooled Bax peptides, using the blood of healthy human donors. Although T-cell responses were of low frequency (0.15%), a CD8+ T-cell clone (KSIVB17) was isolated that optimally recognized Bax136–144 peptide (IMGWTLDFL) presented by HLA-A*0201. KSIVB17 was able to recognize and kill a variety of HLA-matched cancer cells including primary tumor cells from chronic lymphocytic leukemia (CLL). No reactivity was seen against HLA-matched, nontransformed cells such as PHA blasts and skin fibroblasts. Furthermore, KSIVB17 reactivity corresponded with the proteasomal degradation patterns of Bax protein observed in cancer cells. Taken together, our findings suggest a new concept for tumor antigens based on regulatory proteins that are ubiquitously expressed in normal cells, but that have abnormally enhanced degradation in cancer cells. Bax degradation products offer candidate immune antigens in cancers such as CLL in which increased Bax degradation correlates with poor clinical prognosis
    corecore