45 research outputs found

    EST-derived SSR markers used as anchor loci for the construction of a consensus linkage map in ryegrass (Lolium spp.)

    Get PDF
    BACKGROUND: Genetic markers and linkage mapping are basic prerequisites for marker-assisted selection and map-based cloning. In the case of the key grassland species Lolium spp., numerous mapping populations have been developed and characterised for various traits. Although some genetic linkage maps of these populations have been aligned with each other using publicly available DNA markers, the number of common markers among genetic maps is still low, limiting the ability to compare candidate gene and QTL locations across germplasm. RESULTS: A set of 204 expressed sequence tag (EST)-derived simple sequence repeat (SSR) markers has been assigned to map positions using eight different ryegrass mapping populations. Marker properties of a subset of 64 EST-SSRs were assessed in six to eight individuals of each mapping population and revealed 83% of the markers to be polymorphic in at least one population and an average number of alleles of 4.88. EST-SSR markers polymorphic in multiple populations served as anchor markers and allowed the construction of the first comprehensive consensus map for ryegrass. The integrated map was complemented with 97 SSRs from previously published linkage maps and finally contained 284 EST-derived and genomic SSR markers. The total map length was 742 centiMorgan (cM), ranging for individual chromosomes from 70 cM of linkage group (LG) 6 to 171 cM of LG 2. CONCLUSIONS: The consensus linkage map for ryegrass based on eight mapping populations and constructed using a large set of publicly available Lolium EST-SSRs mapped for the first time together with previously mapped SSR markers will allow for consolidating existing mapping and QTL information in ryegrass. Map and markers presented here will prove to be an asset in the development for both molecular breeding of ryegrass as well as comparative genetics and genomics within grass species

    Spring emergence and canopy development strategies in miscanthus hybrids in Mediterranean, continental and maritime European climates

    Get PDF
    Abstract Due to its versatility and storability, biomass is an important resource for renewable materials and energy. Miscanthus hybrids combine high yield potential, low input demand, tolerance of certain marginal land types and several ecosystem benefits. To date, miscanthus breeding has focussed on increasing yield potential by maximising radiation interception through: (1) selection for early emergence, (2) increasing the growth rate to reach canopy closure as fast as possible, and (3) delayed flowering and senescence. The objective of this study is to compare early season re‐growth in miscanthus hybrids cultivated across Europe. Determination of differences in early canopy development on end‐of‐year yield traits is required to provide information for breeding decisions to improve future crop performance. For this purpose, a trial was planted with four miscanthus hybrids (two novel seed‐based hybrids M. sinensis × sinensis [M sin × sin] and M. sacchariflorus × sinensis [M sac × sin], a novel rhizome‐based M sac × sin and a standard Miscanthus × giganteus [M × g] clone) in the UK, Germany, Croatia and Italy, and was monitored in the third and fourth growing season. We determined differences between the hybrids in base temperature, frost sensitivity and emergence strategy. M × g and M sac × sin mainly emerged from belowground plant organs, producing fewer but thicker shoots at the beginning of the growing season but these shoots were susceptible to air frosts (determined by recording 0°C 2 m above ground surface). By contrast, M sin × sin emerged 10 days earlier, avoiding damage by late spring frosts and producing a high number of thinner shoots from aboveground shoots. Therefore, we recommend cultivating M sac × sin at locations with low risk and M sin × sin at locations with higher risk of late spring frosts. Selecting miscanthus hybrids that produce shoots throughout the vegetation period is an effective strategy to limit the risk of late frost damage and avoid reduction in yield from a shortened growing season

    Yield performance of 14 novel inter- and intra-species Miscanthus hybrids across Europe

    Get PDF
    Funding information Bio-Based Industries Joint Undertaking, Grant/Award Number: 745012 ACKNOWLEDGEMENTS For additional information and data collection many thanks to Oberer Lindenhof field station staff (OLI), Unifarm workers (SCH), experimental station Ơaơinovec technical stuff (ZAG). The authors are grateful for the support of the staff at the research stations at PAC. With particular thanks at the Trawsgoed site (TWS) to Robin Warren, Chris Glover, and the late Kevin Roderick. Thanks also to Michael Squance for use of and assistance with the Physisℱ data management platform. FUNDING INFORMATION The GRACE project has received funding from the Bio-based Industries Joint Undertaking (JU) under the European Union's Horizon 2020 research and innovation programme under grant agreement no. 745012. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio-based Industries Consortium.Peer reviewedPublisher PD

    Progress on optimizing miscanthus biomass production for the European bioeconomy:Results of the EU FP7 project OPTIMISC

    Get PDF
    This paper describes the complete findings of the EU-funded research project OPTIMISC, which investigated methods to optimize the production and use of miscanthus biomass. Miscanthus bioenergy and bioproduct chains were investigated by trialing 15 diverse germplasm types in a range of climatic and soil environments across central Europe, Ukraine, Russia, and China. The abiotic stress tolerances of a wider panel of 100 germplasm types to drought, salinity, and low temperatures were measured in the laboratory and a field trial in Belgium. A small selection of germplasm types was evaluated for performance in grasslands on marginal sites in Germany and the UK. The growth traits underlying biomass yield and quality were measured to improve regional estimates of feedstock availability. Several potential high-value bioproducts were identified. The combined results provide recommendations to policymakers, growers and industry. The major technical advances in miscanthus production achieved by OPTIMISC include: (1) demonstration that novel hybrids can out-yield the standard commercially grown genotype Miscanthus x giganteus; (2) characterization of the interactions of physiological growth responses with environmental variation within and between sites; (3) quantification of biomass-quality-relevant traits; (4) abiotic stress tolerances of miscanthus genotypes; (5) selections suitable for production on marginal land; (6) field establishment methods for seeds using plugs; (7) evaluation of harvesting methods; and (8) quantification of energy used in densification (pellet) technologies with a range of hybrids with differences in stem wall properties. End-user needs were addressed by demonstrating the potential of optimizing miscanthus biomass composition for the production of ethanol and biogas as well as for combustion. The costs and life-cycle assessment of seven miscanthusbased value chains, including small- and large-scale heat and power, ethanol, biogas, and insulation material production, revealed GHG-emission- and fossil-energy-saving potentials of up to 30.6 t CO2eqC ha(-1) y(-1) and 429 GJ ha(-1)y(-1), respectively. Transport distance was identified as an important cost factor. Negative carbon mitigation costs of-78 epsilon t(-1) CO2eq C were recorded for local biomass use. The OPTIMISC results demonstrate the potential of miscanthus as a crop for marginal sites and provide information and technologies for the commercial implementation of miscanthus-based value chains

    Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels

    Get PDF
    BACKGROUND: Miscanthus sinensis is a high yielding perennial grass species with great potential as a bioenergy feedstock. One of the challenges that currently impedes commercial cellulosic biofuel production is the technical difficulty to efficiently convert lignocellulosic biomass into biofuel. The development of feedstocks with better biomass quality will improve conversion efficiency and the sustainability of the value-chain. Progress in the genetic improvement of biomass quality may be substantially expedited by the development of genetic markers associated to quality traits, which can be used in a marker-assisted selection program. RESULTS: To this end, a mapping population was developed by crossing two parents of contrasting cell wall composition. The performance of 182 F1 offspring individuals along with the parents was evaluated in a field trial with a randomized block design with three replicates. Plants were phenotyped for cell wall composition and conversion efficiency characters in the second and third growth season after establishment. A new SNP-based genetic map for M. sinensis was built using a genotyping-by-sequencing (GBS) approach, which resulted in 464 short-sequence uniparental markers that formed 16 linkage groups in the male map and 17 linkage groups in the female map. A total of 86 QTLs for a variety of biomass quality characteristics were identified, 20 of which were detected in both growth seasons. Twenty QTLs were directly associated to different conversion efficiency characters. Marker sequences were aligned to the sorghum reference genome to facilitate cross-species comparisons. Analyses revealed that for some traits previously identified QTLs in sorghum occurred in homologous regions on the same chromosome. CONCLUSION: In this work we report for the first time the genetic mapping of cell wall composition and bioconversion traits in the bioenergy crop miscanthus. These results are a first step towards the development of marker-assisted selection programs in miscanthus to improve biomass quality and facilitate its use as feedstock for biofuel production

    Breeding progress and preparedness for mass‐scale deployment of perennial lignocellulosic biomass crops switchgrass, miscanthus, willow and poplar

    Get PDF
    UK: The UK‐led miscanthus research and breeding was mainly supported by the Biotechnology and Biological Sciences Research Council (BBSRC), Department for Environment, Food and Rural Affairs (Defra), the BBSRC CSP strategic funding grant BB/CSP1730/1, Innovate UK/BBSRC “MUST” BB/N016149/1, CERES Inc. and Terravesta Ltd. through the GIANT‐LINK project (LK0863). Genomic selection and genomewide association study activities were supported by BBSRC grant BB/K01711X/1, the BBSRC strategic programme grant on Energy Grasses & Bio‐refining BBS/E/W/10963A01. The UK‐led willow R&D work reported here was supported by BBSRC (BBS/E/C/00005199, BBS/E/C/00005201, BB/G016216/1, BB/E006833/1, BB/G00580X/1 and BBS/E/C/000I0410), Defra (NF0424) and the Department of Trade and Industry (DTI) (B/W6/00599/00/00). IT: The Brain Gain Program (Rientro dei cervelli) of the Italian Ministry of Education, University, and Research supports Antoine Harfouche. US: Contributions by Gerald Tuskan to this manuscript were supported by the Center for Bioenergy Innovation, a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science, under contract number DE‐AC05‐00OR22725. Willow breeding efforts at Cornell University have been supported by grants from the US Department of Agriculture National Institute of Food and Agriculture. Contributions by the University of Illinois were supported primarily by the DOE Office of Science; Office of Biological and Environmental Research (BER); grant nos. DE‐SC0006634, DE‐SC0012379 and DE‐SC0018420 (Center for Advanced Bioenergy and Bioproducts Innovation); and the Energy Biosciences Institute. EU: We would like to further acknowledge contributions from the EU projects “OPTIMISC” FP7‐289159 on miscanthus and “WATBIO” FP7‐311929 on poplar and miscanthus as well as “GRACE” H2020‐EU.3.2.6. Bio‐based Industries Joint Technology Initiative (BBI‐JTI) Project ID 745012 on miscanthus.Peer reviewedPostprintPublisher PD
    corecore