290 research outputs found

    Opening an energy gap in an electron double layer system at integer filling factor in a tilted magnetic field

    Full text link
    We employ magnetocapacitance measurements to study the spectrum of a double layer system with gate-voltage-tuned electron density distributions in tilted magnetic fields. For the dissipative state in normal magnetic fields at filling factor ν=3\nu=3 and 4, a parallel magnetic field component is found to give rise to opening a gap at the Fermi level. We account for the effect in terms of parallel-field-caused orthogonality breaking of the Landau wave functions with different quantum numbers for two subbands.Comment: 4 pages, 4 figures included, to appear in JETP Letter

    Hybridization of electron subbands in a double quantum well at quantizing magnetic field

    Full text link
    We employ magnetocapacitance and far-infrared spectroscopy techniques to study the spectrum of the double-layer electron system in a parabolic quantum well with a narrow tunnel barrier in the centre. For gate-bias-controlled asymmetric electron density distributions in this soft two-subband system we observe both individual subband gaps and double layer gaps at integer filling factor ν\nu. The bilayer gaps are shown to be either trivial common for two subbands or caused by hybridization of electron subbands in magnetic field. We describe the observed hybrid gaps at ν=1\nu=1 and ν=2\nu=2 within a simple model for the modified bilayer spectrum.Comment: REVTeX, 24 pages, 9 figures included. Submitted to Phys. Rev.

    Canted antiferromagnetic phase in a double quantum well in a tilted quantizing magnetic field

    Full text link
    We investigate the double-layer electron system in a parabolic quantum well at filling factor ν=2\nu=2 in a tilted magnetic field using capacitance spectroscopy. The competition between two ground states is found at the Zeeman splitting appreciably smaller than the symmetric-antisymmetric splitting. Although at the transition point the system breaks up into domains of the two competing states, the activation energy turns out to be finite, signaling the occurrence of a new insulator-insulator quantum phase transition. We interpret the obtained results in terms of a predicted canted antiferromagnetic phase.Comment: 4 pages, 3 figures included, accepted to PR

    Strongly enhanced effective mass in dilute two-dimensional electron systems: System-independent origin

    Full text link
    We measure the effective mass in a dilute two-dimensional electron system in (111)-silicon by analyzing temperature dependence of the Shubnikov-de Haas oscillations in the low-temperature limit. A strong enhancement of the effective mass with decreasing electron density is observed. The mass renormalization as a function of the interaction parameter r_s is in good agreement with that reported for (100)-silicon, which shows that the relative mass enhancement is system- and disorder-independent being determined by electron-electron interactions only.Comment: As publishe

    Anisotropic positive magnetoresistance of a nonplanar 2D electron gas in a parallel magnetic field

    Full text link
    We study the transport properties of a 2D electron gas in narrow GaAs quantum wells with AlAs/GaAs superlattice barriers. It is shown that the anisotropic positive magnetoresistance observed in selectively doped semiconductor structures in a parallel magnetic field is caused by the spatial modulation of the 2D electron gas.Comment: 4 pages, 3 figure

    Magnetoresistance of a two-dimensional electron gas in a parallel magnetic field

    Full text link
    The conductivity of a two-dimensional electron gas in a parallel magnetic field is calculated. We take into account the magnetic field induced spin-splitting, which changes the density of states, the Fermi momentum and the screening behavior of the electron gas. For impurity scattering we predict a positive magnetoresistance for low electron density and a negative magnetoresistance for high electron density. The theory is in qualitative agreement with recent experimental results found for Si inversion layers and Si quantum wells.Comment: 4 pages, figures included, PDF onl

    Metal-insulator transition in a 2D electron gas: Equivalence of two approaches for determining the critical point

    Full text link
    The critical electron density for the metal-insulator transition in a two-dimensional electron gas can be determined by two distinct methods: (i) a sign change of the temperature derivative of the resistance, and (ii) vanishing activation energy and vanishing nonlinearity of current-voltage characteristics as extrapolated from the insulating side. We find that in zero magnetic field (but not in the presence of a parallel magnetic field), both methods give equivalent results, adding support to the existence of a true zero-field metal-insulator transition.Comment: As publishe

    THE EGALITARIAN PRINCIPLES OF THE OLD BOHEMIAN STATEHOOD AND THE LEGAL SYSTEM

    Get PDF
    Purpose: The article is devoted to the study of egalitarian principles of medieval Czech statehood and the legal system. Methods: The authors pay special attention to the peculiarities of family self-government of the Czech communities, the institution of hazing in land law and the mechanism of reconciliation as an alternative to the death penalty. Findings: The paper proves that tribal remnants of the customary law of the ancient Czech people in the medieval era contributed to the preservation of egalitarian democratic principles of public administration and justice

    Magnetic-Field-Induced Hybridization of Electron Subbands in a Coupled Double Quantum Well

    Full text link
    We employ a magnetocapacitance technique to study the spectrum of the soft two-subband (or double-layer) electron system in a parabolic quantum well with a narrow tunnel barrier in the centre. In this system unbalanced by gate depletion, at temperatures T\agt 30 mK we observe two sets of quantum oscillations: one originates from the upper electron subband in the closer-to-the-gate part of the well and the other indicates the existence of common gaps in the spectrum at integer fillings. For the lowest filling factors ν=1\nu=1 and ν=2\nu=2, both the common gap presence down to the point of one- to two-subband transition and their non-trivial magnetic field dependences point to magnetic-field-induced hybridization of electron subbands.Comment: Major changes, added one more figure, the latest version to be published in JETP Let
    corecore