120 research outputs found
Obtaining Wannier Functions of a Crystalline Insulator within a Hartree-Fock approach: Applications to LiF and LiCl
An ab initio Hartree-Fock approach aimed at directly obtaining the localized
orthogonal orbitals (Wannier functions) of a crystalline insulator is described
in detail. The method is used to perform all-electron calculations on the
ground states of crystalline lithium fluoride and lithium chloride, without the
use of any pseudo or model potentials. Quantities such as total energy, x-ray
structure factors and Compton profiles obtained using the localized
Hartree-Fock orbitals are shown to be in excellent agreement with the
corresponding quantities calculated using the conventional Bloch-orbital based
Hartree-Fock approach. Localization characteristics of these orbitals are also
discussed in detail.Comment: 39 Pages, RevTex, 4 postscript figures, to appear in PRB15, January
9
Wavefunction-based correlated ab initio calculations on crystalline solids
We present a wavefunction-based approach to correlated ab initio calculations
on crystalline insulators of infinite extent. It uses the representation of the
occupied and the unoccupied (virtual) single-particle states of the infinite
solid in terms of Wannier functions. Electron correlation effects are evaluated
by considering virtual excitations from a small region in and around the
reference cell, keeping the electrons of the rest of the infinite crystal
frozen at the Hartree-Fock level. The method is applied to study the ground
state properties of the LiH crystal, and is shown to yield rapidly convergent
results.Comment: 6 pages, RevTex, to appear in Phys. Rev.
Evaluation of electronic correlation contributions for optical tensors of large systems using the incremental scheme
A new method is developed to calculate the optical tensors of large systems based on available wave function correlation approaches (e.g., the coupled cluster ansatz) in the framework of the incremental scheme. The convergence behaviors of static first- and second-order polarizabilities with respect to the order of the incremental expansion are examined and discussed for the model system Ga4 As4 H18. The many-body increments of optical tensors originate from the dipole-dipole coupling effects and the corresponding contributions to the incremental expansion are compared among local domains with different distances and orientations. The weight factors for increments of optical tensors are found to be tensorial in accordance with the structural symmetry as well as the polarization and the external electric field directions. The long-term goal of the proposed approach is to incorporate the sophisticated molecular correlation methods into the accurate wave function calculation of optical properties of large compounds or even crystals. © 2007 American Institute of Physics.published_or_final_versio
Towards a quantum-chemical description of crystalline insulators: A Wannier-function-based Hartree-Fock study of Li2O and Na2O
A recently proposed approach for performing electronic-structure calculations
on crystalline insulators in terms of localized orthogonal orbitals is applied
to the oxides of lithium and sodium, Li2O and Na2O. Cohesive energies, lattice
constants and bulk moduli of the aforementioned systems are determined at the
Hartree-Fock level, and the corresponding values are shown to be in excellent
agreement with the values obtained by a traditional Bloch-orbital-based
Hartree-Fock approach. The present Wannier-function-based approach is expected
to be advantageous in the treatment of electron-correlation effects in an
infinite solid by conventional quantum-chemical methods.Comment: 15 Pages, RevTex, 3 postscript figures (included), to appear in the
Journal of Chemical Physics, May 15, 199
Orbital Localization and Delocalization Effects in the U 5f^2 Configuration: Impurity Problem
Anderson models, based on quantum chemical studies of the molecule of
U(C_8H_8)_2, are applied to investigate the problem of an U impurity in a
metal. The special point here is that the U 5f-orbitals are divided into two
subsets: an almost completely localized set and a considerably delocalized one.
Due to the crystal field, both localized and delocalized U 5f-orbitals affect
the low-energy physics. A numerical renormalization group study shows that
every fixed point is characterized by a residual local spin and a phase shift.
The latter changes between 0 and \pi/2, which indicates the competition between
two different fixed points. Such a competition between the different local
spins at the fixed points reflects itself in the impurity magnetic
susceptibility at high temperatures. These different features cannot be
obtained if the special characters of U 5f-orbitals are neglected.Comment: 4 pages, REVTeX, email to [email protected]
A Wannier-function-based ab initio Hartree-Fock study of polyethylene
In the present letter, we report the extension of our Wannier-function-based
ab initio Hartree-Fock approach---meant originally for three-dimensional
crystalline insulators---to deal with quasi-one-dimensional periodic systems
such as polymers. The system studied is all-transoid polyethylene, and results
on optimized lattice parameters, cohesive energy and the band structure
utilizing 6-31G** basis sets are presented. Our results are also shown to be in
excellent agreement with those obtained with traditional Bloch-orbital-based
approaches.Comment: 15 Pages, RevTex, inludes four figures, Chem. Phys. Letts., in press
(1998
Ab initio many-body calculations on infinite carbon and boron-nitrogen chains
In this paper we report first-principles calculations on the ground-state
electronic structure of two infinite one-dimensional systems: (a) a chain of
carbon atoms and (b) a chain of alternating boron and nitrogen atoms. Meanfield
results were obtained using the restricted Hartree-Fock approach, while the
many-body effects were taken into account by second-order M{\o}ller-Plesset
perturbation theory and the coupled-cluster approach. The calculations were
performed using 6-31 basis sets, including the d-type polarization
functions. Both at the Hartree-Fock (HF) and the correlated levels we find that
the infinite carbon chain exhibits bond alternation with alternating single and
triple bonds, while the boron-nitrogen chain exhibits equidistant bonds. In
addition, we also performed density-functional-theory-based local density
approximation (LDA) calculations on the infinite carbon chain using the same
basis set. Our LDA results, in contradiction to our HF and correlated results,
predict a very small bond alternation. Based upon our LDA results for the
carbon chain, which are in agreement with an earlier LDA calculation
calculation [ E.J. Bylaska, J.H. Weare, and R. Kawai, Phys. Rev. B 58, R7488
(1998).], we conclude that the LDA significantly underestimates Peierls
distortion. This emphasizes that the inclusion of many-particle effects is very
important for the correct description of Peierls distortion in one-dimensional
systems.Comment: 3 figures (included). To appear in Phys. Rev.
Correlation effects in ionic crystals: I. The cohesive energy of MgO
High-level quantum-chemical calculations, using the coupled-cluster approach
and extended one-particle basis sets, have been performed for (Mg2+)n (O2-)m
clusters embedded in a Madelung potential. The results of these calculations
are used for setting up an incremental expansion for the correlation energy of
bulk MgO. This way, 96% of the experimental cohesive energy of the MgO crystal
is recovered. It is shown that only 60% of the correlation contribution to the
cohesive energy is of intra-ionic origin, the remaining part being caused by
van der Waals-like inter-ionic excitations.Comment: LaTeX, 20 pages, no figure
- …