77 research outputs found

    CD107a(+) (LAMP-1) Cytotoxic CD8(+) T-Cells in Lupus Nephritis Patients

    Get PDF
    Cytotoxic CD8(+) T-cells play a pivotal role in the pathogenesis of systemic lupus erythematosus (SLE). The aim of this study was to investigate the role of CD107a (LAMP-1) on cytotoxic CD8(+) T-cells in SLE-patients in particular with lupus nephritis. Peripheral blood of SLE-patients (n = 31) and healthy controls (n = 21) was analyzed for the expression of CD314 and CD107a by flow cytometry. Kidney biopsies of lupus nephritis patients were investigated for the presence of CD8(+) and C107a(+) cells by immunohistochemistry and immunofluorescence staining. The percentages of CD107a(+) on CD8(+) T-cells were significantly decreased in SLE-patients as compared to healthy controls (40.2 +/- 18.5% vs. 47.9 +/- 15.0%, p = 0.02). This was even more significant in SLE-patients with inactive disease. There was a significant correlation between the percentages of CD107a(+)CD8(+) T-cells and SLEDAI. The evaluation of lupus nephritis biopsies showed a significant number of CD107a(+)CD8(+) T-cells mainly located in the peritubular infiltrates. The intrarenal expression of CD107a(+) was significantly correlated with proteinuria. These results demonstrate that CD8(+) T-cells of patients with systemic lupus erythematosus have an altered expression of CD107a which seems to be associated with disease activity. The proof of intrarenal CD107a(+)CD8(+) suggests a role in the pathogenesis of lupus nephritis

    Increased expression of costimulatory markers CD134 and CD80 on interleukin-17 producing T cells in patients with systemic lupus erythematosus

    Get PDF
    Introduction: There is growing evidence that interleukin 17 (IL-17) producing T cells are involved in the pathogenesis of systemic lupus erythematosus (SLE). Previous studies showed that increased percentages of T-cell subsets expressing the costimulatory molecules CD80 and CD134 are associated with disease activity and renal involvement in SLE. The aim of this study was to investigate the distribution and phenotypical characteristics of IL-17 producing T-cells in SLE, in particular in patients with lupus nephritis, with emphasis on the expression of CD80 and CD134. Methods: Thirty-four patients (3 male, 31 female, mean age 41 +/- 15 years) fulfilling at least four of the American College of Rheumatology (ACR) revised criteria for the diagnosis of SLE and 24 healthy controls were enrolled. T-cells from the peripheral blood were analysed by fluorescence activated cell sorting (FACS) for their expression levels of CD80, CD134 and CCR6. In vitro stimulated CD3(+)IL17(+) cells were also investigated for the expression of these costimulatory markers. Finally, renal biopsies from SLE patients were evaluated for the presence of CD134 expressing T-cells. Results: Percentages of IL-17 expressing T-cells were significantly increased in patients with active disease as compared to healthy controls (1.46 +/- 0.58% versus 0.93 +/- 0.30%, P = 0.007). The percentage of IL-17 producing T-cells was correlated with disease activity as assessed by systemic lupus erythematosus disease activity index (SLEDAI) (r = 0.53, P = 0.003). In patients, most of the IL-17 producing T-cells were confined to the CCR6(+) T-cell subset (80 +/- 13%). Expression of CD80 and CD134 on the IL-17 producing T-cell subset was higher in SLE than in healthy controls (HC) (CD134: 71.78 +/- 14.51% versus 51.45 +/- 16.58%, P = 0.002; CD80: 25.5 +/- 14.99% versus 14.99 +/- 5.74%, P = 0.02). Also, patients with lupus nephritis expressed higher levels of CD134(+) on CD3(+)IL-17(+) cells as compared to HC (72.69 +/- 11.54% versus 51.45 +/- 16.58%, P = 0.006). Furthermore, renal biopsies of lupus nephritis patients showed infiltration of CD134(+) T cells. Conclusions: Percentages of IL-17 expressing T-cells correlate with disease activity. Further, these cells show increased expression of costimulatory markers such as CD134 and CD80. The presence of CD134(+) T-cells in renal biopsies of lupus nephritis patients suggest that these cells migrate to the kidney and might contribute to inflammatory processes through IL-17 secretion

    Urine levels of HMGB1 in Systemic Lupus Erythematosus patients with and without renal manifestations

    Get PDF
    INTRODUCTION: Lupus nephritis (LN) is a severe and frequent manifestation of systemic lupus erythematosus (SLE). Its pathogenesis has not been fully elucidated but immune complexes are considered to contribute to the inflammatory pathology in LN. High Mobility Group Box 1 (HMGB1) is a nuclear non-histone protein which is secreted from different types of cells during activation and/or cell death and may act as a pro-inflammatory mediator, alone or as part of DNA-containing immune complexes in SLE. Urinary excretion of HMGB1 might reflect renal inflammatory injury. To assess whether urinary HMGB1 reflects renal inflammation we determined serum levels of HMGB1 simultaneously with its urinary levels in SLE patients with and without LN in comparison to healthy controls (HC). We also analyzed urinary HMGB1 levels in relation with clinical and serological disease activity. METHODS: The study population consisted of 69 SLE patients and 17 HC. Twenty-one patients had biopsy proven active LN, 15 patients had a history of LN without current activity, and 33 patients had non-renal SLE. Serum and urine levels of HMGB1 were both measured by western blotting. Clinical and serological parameters were assessed according to routine procedures. In 17 patients with active LN a parallel analysis was performed on the expression of HMGB1 in renal biopsies. RESULTS: Serum and urinary levels of HMGB1 were significantly increased in patients with active LN compared to patients without active LN and HC. Similarly, renal tissue of active LN patients showed strong expression of HMGB1 at cytoplasmic and extracellular sites suggesting active release of HMGB1. Serum and urinary levels in patients without active LN were also significantly higher compared to HC. Urinary HMGB1 levels correlated with SLEDAI, and showed a negative correlation with complement C3 and C4. CONCLUSION: Levels of HMGB1 in urine of SLE patients, in particular in those with active LN, are increased and correlate with SLEDAI scores. Renal tissue of LN patients shows increased release of nuclear HMGB1 compared to control renal tissue. HMGB1, although at lower levels, is, however, also present in the urine of patients without active LN. These data suggest that urinary HMGB1 might reflect both local renal inflammation as well as systemic inflammation

    Increase in IL-21 producing T-cells in patients with systemic lupus erythematosus

    Get PDF
    INTRODUCTION: Systemic lupus erythematosus (SLE) is an autoimmune disease accompanied by a disturbed T-cell balance skewed towards effector T-cells, in particular Th17-cells. The novel cytokine interleukin-21 (IL-21) is suggested to be crucial for triggering T-cell responses towards IL-17 producing cells. Thus, we aimed to investigate the ability of T-cells to produce IL-21 and IL-17 in SLE patients. METHODS: Peripheral blood of 34 SLE patients and 18 healthy controls (HC) was stimulated with phorbol myristate acetate (PMA) and calcium ionophore (Ca-Io). Percentages of IL-21- and IL-17A expressing T-cells were analysed by flow cytometry. The expression levels of the transcription factors B-cell lymphoma-6 (BCL-6) and factors retinoid-related orphan receptor (ROR-γt) were assessed in T-cells by real-time RT-PCR and flow cytometry. Additionally, IL-21 receptor (IL-21R) expression on B- and T-cells of patients and HC was analyzed. RESULTS: Significantly increased percentages of IL-21 expressing CD4(+ )T-cells and CD8(+ )T-cells were found in SLE patients as compared to HC. The percentages of IL-21(+ )CD4(+ )T-cells and CD8(+ )T-cells correlated significantly with the percentages of IL-17A(+ )CD4(+ )T-cells and CD8(+ )T-cells, respectively. The relative expression of BCL-6 and ROR-γt did not differ between SLE patients and HC. IL-21R expression occurred mainly on B-cells and was not different comparing SLE patients and HC. CONCLUSIONS: This study demonstrates an increased proportion of IL-21(+ )T-cells in SLE patients correlating with the proportion of IL-17(+ )T-cells. This suggests a pivotal role of IL-21 in the pathogenesis of SLE

    Immune Response in Moderate to Critical Breakthrough COVID-19 Infection After mRNA Vaccination

    Get PDF
    SARS-CoV-2 variants of concern (VOCs) can trigger severe endemic waves and vaccine breakthrough infections (VBI). We analyzed the cellular and humoral immune response in 8 patients infected with the alpha variant, resulting in moderate to fatal COVID-19 disease manifestation, after double mRNA-based anti-SARS-CoV-2 vaccination. In contrast to the uninfected vaccinated control cohort, the diseased individuals had no detectable high-avidity spike (S)-reactive CD4+ and CD8+ T cells against the alpha variant and wild type (WT) at disease onset, whereas a robust CD4+ T-cell response against the N- and M-proteins was generated. Furthermore, a delayed alpha S-reactive high-avidity CD4+ T-cell response was mounted during disease progression. Compared to the vaccinated control donors, these patients also had lower neutralizing antibody titers against the alpha variant at disease onset. The delayed development of alpha S-specific cellular and humoral immunity upon VBI indicates reduced immunogenicity against the S-protein of the alpha VOC, while there was a higher and earlier N- and M-reactive T-cell response. Our findings do not undermine the current vaccination strategies but underline a potential need for the inclusion of VBI patients in alternative vaccination strategies and additional antigenic targets in next-generation SARS-CoV-2 vaccines

    CXCR4 blockade reduces the severity of murine heart allograft rejection by plasmacytoid dendritic cell-mediated immune regulation

    Get PDF
    Allograft-specific regulatory T cells (Treg cells) are crucial for long-term graft acceptance after transplantation. Although adoptive Treg cell transfer has been proposed, major challenges include graft-specificity and stability. Thus, there is an unmet need for the direct induction of graft-specific Treg cells. We hypothesized a synergism of the immunotolerogenic effects of rapamycin (mTOR inhibition) and plerixafor (CXCR4 antagonist) for Treg cell induction. Thus, we performed fully-mismatched heart transplantations and found combination treatment to result in prolonged allograft survival. Moreover, fibrosis and myocyte lesions were reduced. Although less CD3+ T cell infiltrated, higher Treg cell numbers were observed. Noteworthy, this was accompanied by a plerixafor-dependent plasmacytoid dendritic cells-(pDCs)-mobilization. Furthermore, in vivo pDC-depletion abrogated the plerixafor-mediated Treg cell number increase and reduced allograft survival. Our pharmacological approach allowed to increase Treg cell numbers due to pDC-mediated immune regulation. Therefore pDCs can be an attractive immunotherapeutic target in addition to plerixafor treatment

    Low avidity circulating SARS-CoV-2 reactive CD8+ T cells with proinflammatory TEMRA phenotype are associated with post-acute sequelae of COVID-19

    Get PDF
    The role of adaptive SARS-CoV-2 specific immunity in post-acute sequelae of COVID-19 (PASC) is not well explored, although a growing population of convalescent COVID-19 patients with manifestation of PASC is observed. We analyzed the SARS-CoV-2-specific immune response, via pseudovirus neutralizing assay and multiparametric flow cytometry in 40 post-acute sequelae of COVID-19 patients with non-specific PASC manifestation and 15 COVID-19 convalescent healthy donors. Although frequencies of SARS-CoV-2-reactive CD4+ T cells were similar between the studied cohorts, a stronger SARS-CoV-2 reactive CD8+ T cell response, characterized by IFNγ production and predominant TEMRA phenotype but low functional TCR avidity was detected in PASC patients compared to controls. Of interest, high avidity SARS-CoV-2-reactive CD4+ and CD8+ T cells were comparable between the groups demonstrating sufficient cellular antiviral response in PASC. In line with the cellular immunity, neutralizing capacity in PASC patients was not inferior compared to controls. In conclusion, our data suggest that PASC may be driven by an inflammatory response triggered by an expanded population of low avidity SARS-CoV-2 reactive pro-inflammatory CD8+ T cells. These pro-inflammatory T cells with TEMRA phenotype are known to be activated by a low or even without TCR stimulation and lead to a tissue damage. Further studies including animal models are required for a better understanding of underlying immunopathogensis. Summary: A CD8+ driven persistent inflammatory response triggered by SARS-CoV-2 may be responsible for the observed sequelae in PASC patients

    Covid-19 triage in the emergency department 2.0: how analytics and AI transform a human-made algorithm for the prediction of clinical pathways

    Get PDF
    The Covid-19 pandemic has pushed many hospitals to their capacity limits. Therefore, a triage of patients has been discussed controversially primarily through an ethical perspective. The term triage contains many aspects such as urgency of treatment, severity of the disease and pre-existing conditions, access to critical care, or the classification of patients regarding subsequent clinical pathways starting from the emergency department. The determination of the pathways is important not only for patient care, but also for capacity planning in hospitals. We examine the performance of a human-made triage algorithm for clinical pathways which is considered a guideline for emergency departments in Germany based on a large multicenter dataset with over 4,000 European Covid-19 patients from the LEOSS registry. We find an accuracy of 28 percent and approximately 15 percent sensitivity for the ward class. The results serve as a benchmark for our extensions including an additional category of palliative care as a new label, analytics, AI, XAI, and interactive techniques. We find significant potential of analytics and AI in Covid-19 triage regarding accuracy, sensitivity, and other performance metrics whilst our interactive human-AI algorithm shows superior performance with approximately 73 percent accuracy and up to 76 percent sensitivity. The results are independent of the data preparation process regarding the imputation of missing values or grouping of comorbidities. In addition, we find that the consideration of an additional label palliative care does not improve the results
    corecore