524 research outputs found
Lower Bounds on Implementing Robust and Resilient Mediators
We consider games that have (k,t)-robust equilibria when played with a
mediator, where an equilibrium is (k,t)-robust if it tolerates deviations by
coalitions of size up to k and deviations by up to players with unknown
utilities. We prove lower bounds that match upper bounds on the ability to
implement such mediators using cheap talk (that is, just allowing communication
among the players). The bounds depend on (a) the relationship between k, t, and
n, the total number of players in the system; (b) whether players know the
exact utilities of other players; (c) whether there are broadcast channels or
just point-to-point channels; (d) whether cryptography is available; and (e)
whether the game has a k+t$ players, guarantees that every player gets a
worse outcome than they do with the equilibrium strategy
An Optimal Self-Stabilizing Firing Squad
Consider a fully connected network where up to processes may crash, and
all processes start in an arbitrary memory state. The self-stabilizing firing
squad problem consists of eventually guaranteeing simultaneous response to an
external input. This is modeled by requiring that the non-crashed processes
"fire" simultaneously if some correct process received an external "GO" input,
and that they only fire as a response to some process receiving such an input.
This paper presents FireAlg, the first self-stabilizing firing squad algorithm.
The FireAlg algorithm is optimal in two respects: (a) Once the algorithm is
in a safe state, it fires in response to a GO input as fast as any other
algorithm does, and (b) Starting from an arbitrary state, it converges to a
safe state as fast as any other algorithm does.Comment: Shorter version to appear in SSS0
On the Tomography of Networks and Multicast Trees
In this paper we model the tomography of scale free networks by studying the
structure of layers around an arbitrary network node. We find, both
analytically and empirically, that the distance distribution of all nodes from
a specific network node consists of two regimes. The first is characterized by
rapid growth, and the second decays exponentially. We also show that the nodes
degree distribution at each layer is a power law with an exponential cut-off.
We obtain similar results for the layers surrounding the root of multicast
trees cut from such networks, as well as the Internet. All of our results were
obtained both analytically and on empirical Interenet data
On the possibility and impossibility of achieving clock synchronization
AbstractIt is known that clock synchronization can be achieved in the presence of faulty processors as long as the nonfaulty processors are connected, provided that some authentication technique is used. Without authentication the number of faults that can be tolerated has been an open question. Here we show that if we restrict logical clocks to running within some linear functions of real time, then clock synchronization is impossible without authentication when one-third or more of the processors are faulty. We also provide a lower bound on the closeness to which simultaneity can be achieved in the network as a function of the transmission and processing delay properties of the network
Colordag: An Incentive-Compatible Blockchain
We present Colordag, a blockchain protocol where following the prescribed
strategy is, with high probability, a best response as long as all miners have
less than 1/2 of the mining power. We prove the correctness of Colordag even if
there is an extremely powerful adversary who knows future actions of the
scheduler: specifically, when agents will generate blocks and when messages
will arrive. The state-of-the-art protocol, Fruitchain, is an epsilon-Nash
equilibrium as long as all miners have less than 1/2 of the mining power.
However, there is a simple deviation that guarantees that deviators are never
worse off than they would be by following Fruitchain, and can sometimes do
better. Thus, agents are motivated to deviate. Colordag implements a solution
concept that we call epsilon-sure Nash equilibrium and does not suffer from
this problem. Because it is an epsilon-sure Nash equilibrium, Colordag is an
epsilon Nash equilibrium and with probability (1 - epsilon) is a best response.Comment: To be published in DISC 202
On Byzantine Broadcast in Loosely Connected Networks
We consider the problem of reliably broadcasting information in a multihop
asynchronous network that is subject to Byzantine failures. Most existing
approaches give conditions for perfect reliable broadcast (all correct nodes
deliver the authentic message and nothing else), but they require a highly
connected network. An approach giving only probabilistic guarantees (correct
nodes deliver the authentic message with high probability) was recently
proposed for loosely connected networks, such as grids and tori. Yet, the
proposed solution requires a specific initialization (that includes global
knowledge) of each node, which may be difficult or impossible to guarantee in
self-organizing networks - for instance, a wireless sensor network, especially
if they are prone to Byzantine failures. In this paper, we propose a new
protocol offering guarantees for loosely connected networks that does not
require such global knowledge dependent initialization. In more details, we
give a methodology to determine whether a set of nodes will always deliver the
authentic message, in any execution. Then, we give conditions for perfect
reliable broadcast in a torus network. Finally, we provide experimental
evaluation for our solution, and determine the number of randomly distributed
Byzantine failures than can be tolerated, for a given correct broadcast
probability.Comment: 1
Separation of Circulating Tokens
Self-stabilizing distributed control is often modeled by token abstractions.
A system with a single token may implement mutual exclusion; a system with
multiple tokens may ensure that immediate neighbors do not simultaneously enjoy
a privilege. For a cyber-physical system, tokens may represent physical objects
whose movement is controlled. The problem studied in this paper is to ensure
that a synchronous system with m circulating tokens has at least d distance
between tokens. This problem is first considered in a ring where d is given
whilst m and the ring size n are unknown. The protocol solving this problem can
be uniform, with all processes running the same program, or it can be
non-uniform, with some processes acting only as token relays. The protocol for
this first problem is simple, and can be expressed with Petri net formalism. A
second problem is to maximize d when m is given, and n is unknown. For the
second problem, the paper presents a non-uniform protocol with a single
corrective process.Comment: 22 pages, 7 figures, epsf and pstricks in LaTe
- …