71 research outputs found
NF kappa B induces overexpression of bovine FcRn: a novel mechanism that further contributes to the enhanced immune response in genetically modified animals carrying extra copies of FcRn
Among the many functions of the neonatal Fc receptor (FcRn) for
IgG, it binds to IgG-opsonized antigen complexes and propagates
their traffic into lysosomes where antigen processing occurs. We
previously reported that transgenic (Tg) mice and rabbits that
carry multiple copies and overexpress FcRn have augmented
humoral immune responses. Nuclear factor-kappa B (NFκB) is a
critical molecule in the signaling cascade in the immune
response. NFκB induces human FcRn expression and our previous in
silico analysis suggested NFκB binding sites in the promoter
region of the bovine (b) FcRn α-chain gene (FCGRT). Here, we
report the identification of three NFκB transcription binding
sites in the promoter region of this gene using luciferase
reporter gene technology, electromobility shift assay and
supershift analysis. Stimulation of primary bovine endothelial
cells with the Toll like receptor-4 ligand lipopolysaccharide
(LPS), which mediates its effect via NFκB, resulted in rapid
upregulation of the bFcRn expression and a control gene, bovine
E-selectin. This rapid bFcRn gene induction was also observed in
the spleen of bFcRn Tg mice treated with intraperitoneally
injected LPS, analyzed by northern blot analysis. Finally, NFκB-
mediated bFcRn upregulation was confirmed at the protein level
in macrophages isolated from the bFcRn Tg mice using flow
cytometry with a newly developed FcRn specific monoclonal
antibody that does not cross-react with the mouse FcRn. We
conclude that NFκB regulates bFcRn expression and thus optimizes
its functions, e.g., in the professional antigen presenting
cells, and contributes to the much augmented humoral immune
response in the bFcRn Tg mice
A unique haplotype of RCCX copy number variation: from the clinics of congenital adrenal hyperplasia to evolutionary genetics.
There is a difficulty in the molecular diagnosis of congenital adrenal hyperplasia (CAH) due to the c.955C>T (p.(Q319*), formerly Q318X, rs7755898) variant of the CYP21A2 gene. Therefore, a systematic assessment of the genetic and evolutionary relationships between c.955C>T, CYP21A2 haplotypes and the RCCX copy number variation (CNV) structures, which harbor CYP21A2, was performed. In total, 389 unrelated Hungarian individuals with European ancestry (164 healthy subjects, 125 patients with non-functioning adrenal incidentaloma and 100 patients with classical CAH) as well as 34 adrenocortical tumor specimens were studied using a set of experimental and bioinformatic methods. A unique, moderately frequent (2%) haplotypic RCCX CNV structure with three repeated segments, abbreviated to LBSASB, harboring a CYP21A2 with a c.955C>T variant in the 3'-segment, and a second CYP21A2 with a specific c.*12C>T (rs150697472) variant in the middle segment occurred in all c.955C>T carriers with normal steroid levels. The second CYP21A2 was free of CAH-causing mutations and produced mRNA in the adrenal gland, confirming its functionality and ability to rescue the carriers from CAH. Neither LBSASB nor c.*12C>T occurred in classical CAH patients. However, CAH-causing CYP21A2 haplotypes with c.955C>T could be derived from the 3'-segment of LBSASB after the loss of functional CYP21A2 from the middle segment. The c.*12C>T indicated a functional CYP21A2 and could distinguish between non-pathogenic and pathogenic genomic contexts of the c.955C>T variant in the studied European population. Therefore, c.*12C>T may be suitable as a marker to avoid this genetic confound and improve the diagnosis of CAH
Variational Calculation on A=3 and 4 Nuclei with Non-Local Potentials
The application of the hyperspherical harmonic approach to the case of
non-local two-body potentials is described. Given the properties of the
hyperspherical harmonic functions, there are no difficulties in considering the
approach in both coordinate and momentum space. The binding energies and other
ground state properties of A=3 and 4 nuclei are calculated using the CD Bonn
2000 and N3LO two-body potentials. The results are shown to be in excellent
agreement with corresponding ones obtained by other accurate techniques.Comment: 12 pages, 6 tables, RevTex
Analyzing power in nucleon-deuteron scattering and three-nucleon forces
Three-nucleon forces have been considered to be one possibility to resolve
the well known discrepancy between experimental values and theoretical
calculations of the nucleon analyzing power in low energy nucleon-deuteron
scattering. In this paper, we investigate possible effects of two-pion exchange
three-nucleon forces on the analyzing power and the differential cross section.
We found that the reason for different effects on the analyzing power by
different three-nucleon forces found in previous calculations is related to the
existence of the contact term. Effects of some variations of two-pion exchange
three-nucleon forces are investigated. Also, an expression for the measure of
the nucleon analyzing power with quartet P-wave phase shifts is presented.Comment: 11 pages including 2 eps figures, use epsfig.sty, to appear in Phys.
Rev.
A ligand-based system for receptor-specific delivery of proteins
Gene delivery using vector or viral-based methods is often limited by technical and safety barriers. A promising alternative that circumvents these shortcomings is the direct delivery of proteins into cells. Here we introduce a non-viral, ligand-mediated protein delivery system capable of selectively targeting primary skin cells in-vivo. Using orthologous self-labelling tags and chemical cross-linkers, we conjugate large proteins to ligands that bind their natural receptors on the surface of keratinocytes. Targeted CRE-mediated recombination was achieved by delivery of ligand cross-linked CRE protein to the skin of transgenic reporter mice, but was absent in mice lacking the ligand\u2019s cell surface receptor. We further show that ligands mediate the intracellular delivery of Cas9 allowing for CRISPR-mediated gene editing in the skin more efficiently than adeno-associated viral gene delivery. Thus, a ligand-based system enables the effective and receptor-specific delivery of large proteins and may be applied to the treatment of skin-related genetic diseases
Nucleon-Nucleon Interaction: A Typical/Concise Review
Nearly a recent century of work is divided to Nucleon-Nucleon (NN)
interaction issue. We review some overall perspectives of NN interaction with a
brief discussion about deuteron, general structure and symmetries of NN
Lagrangian as well as equations of motion and solutions. Meanwhile, the main NN
interaction models, as frameworks to build NN potentials, are reviewed
concisely. We try to include and study almost all well-known potentials in a
similar way, discuss more on various commonly used plain forms for two-nucleon
interaction with an emphasis on the phenomenological and meson-exchange
potentials as well as the constituent-quark potentials and new ones based on
chiral effective field theory and working in coordinate-space mostly. The
potentials are constructed in a way that fit NN scattering data, phase shifts,
and are also compared in this way usually. An extra goal of this study is to
start comparing various potentials forms in a unified manner. So, we also
comment on the advantages and disadvantages of the models and potentials partly
with reference to some relevant works and probable future studies.Comment: 85 pages, 5 figures, than the previous v3 edition, minor changes, and
typos fixe
Loss of DOCK2 potentiates Inflammatory Bowel Disease–associated colorectal cancer via immune dysfunction and IFNγ induction of IDO1 expression
Inflammatory Bowel Disease-associated colorectal cancer (IBD-CRC) is a known and serious complication of Inflammatory Bowel Disease (IBD) affecting the colon. However, relatively little is known about the pathogenesis of IBD-associated colorectal cancer in comparison with its sporadic cancer counterpart. Here, we investigated the function of Dock2, a gene mutated in ~10% of IBD-associated colorectal cancers that encodes a guanine nucleotide exchange factor (GEF). Using a genetically engineered mouse model of IBD-CRC, we found that whole body loss of Dock2 increases tumourigenesis via immune dysregulation. Dock2-deficient tumours displayed increased levels of IFNγ-associated genes, including the tryptophan metabolising, immune modulatory enzyme,IDO1, when compared to Dock2-proficient tumours. This phenotype was driven by increased IFNγ-production in T cell populations, which infiltrated Dock2-deficient tumours, promoting IDO1 expression in tumour epithelial cells. We show that IDO1 inhibition delays tumourigenesis in Dock2 knockout mice, and we confirm that this pathway is conserved across species as IDO1 expression iselevated in human IBD-CRC and in sporadic CRC cases with mutated DOCK2. Together, these data demonstrate a previously unidentified tumour suppressive role of DOCK2 that limits IFNγ-induced IDO1 expression and cancer progression, opening potential new avenues for therapeutic intervention
Both Positive and Negative Selection Pressures Contribute to the Polymorphism Pattern of the Duplicated Human CYP21A2 Gene.
The human steroid 21-hydroxylase gene (CYP21A2) participates in cortisol and aldosterone biosynthesis, and resides together with its paralogous (duplicated) pseudogene in a multiallelic copy number variation (CNV), called RCCX CNV. Concerted evolution caused by non-allelic gene conversion has been described in great ape CYP21 genes, and the same conversion activity is responsible for a serious genetic disorder of CYP21A2, congenital adrenal hyperplasia (CAH). In the current study, 33 CYP21A2 haplotype variants encoding 6 protein variants were determined from a European population. CYP21A2 was shown to be one of the most diverse human genes (HHe=0.949), but the diversity of intron 2 was greater still. Contrary to previous findings, the evolution of intron 2 did not follow concerted evolution, although the remaining part of the gene did. Fixed sites (different fixed alleles of sites in human CYP21 paralogues) significantly accumulated in intron 2, indicating that the excess of fixed sites was connected to the lack of effective non-allelic conversion and concerted evolution. Furthermore, positive selection was presumably focused on intron 2, and possibly associated with the previous genetic features. However, the positive selection detected by several neutrality tests was discerned along the whole gene. In addition, the clear signature of negative selection was observed in the coding sequence. The maintenance of the CYP21 enzyme function is critical, and could lead to negative selection, whereas the presumed gene regulation altering steroid hormone levels via intron 2 might help fast adaptation, which broadly characterizes the genes of human CNVs responding to the environment
Common Genetic Variants of the Human Steroid 21-Hydroxylase Gene (CYP21A2) Are Related to Differences in Circulating Hormone Levels
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Hungarian Scientific Research Fund (OTKA, PD100648 (AP)) Technology Innovation Fund, National Developmental Agency (KTIA-AIK-2012-12-1-0010). AP is the recipient of a “Lendület” grant from the Hungarian Academy of Sciences
MASP-1 Induces a Unique Cytokine Pattern in Endothelial Cells: A Novel Link between Complement System and Neutrophil Granulocytes
Microbial infection urges prompt intervention by the immune system. The complement cascade and neutrophil granulocytes are the predominant contributors to this immediate anti-microbial action. We have previously shown that mannan-binding lectin-associated serine protease-1 (MASP-1), the most abundant enzyme of the complement lectin pathway, can induce p38-MAPK activation, NFkappaB signaling, and Ca(2+)-mobilization in endothelial cells. Since neutrophil chemotaxis and transmigration depends on endothelial cell activation, we aimed to explore whether recombinant MASP-1 (rMASP-1) is able to induce cytokine production and subsequent neutrophil chemotaxis in human umbilical vein endothelial cells (HUVEC). We found that HUVECs activated by rMASP-1 secreted IL-6 and IL-8, but not IL-1alpha, IL-1ra, TNFalpha and MCP-1. rMASP-1 induced dose-dependent IL-6 and IL-8 production with different kinetics. rMASP-1 triggered IL-6 and IL-8 production was regulated predominantly by the p38-MAPK pathway. Moreover, the supernatant of rMASP-1-stimulated HUVECs activated the chemotaxis of neutrophil granulocytes as an integrated effect of cytokine production. Our results implicate that besides initializing the complement lectin pathway, MASP-1 may activate neutrophils indirectly, via the endothelial cells, which link these effective antimicrobial host defense mechanisms
- …