74 research outputs found

    The Zakharov-Shabat spectral problem on the semi-line: Hilbert formulation and applications

    Full text link
    The inverse spectral transform for the Zakharov-Shabat equation on the semi-line is reconsidered as a Hilbert problem. The boundary data induce an essential singularity at large k to one of the basic solutions. Then solving the inverse problem means solving a Hilbert problem with particular prescribed behavior. It is demonstrated that the direct and inverse problems are solved in a consistent way as soon as the spectral transform vanishes with 1/k at infinity in the whole upper half plane (where it may possess single poles) and is continuous and bounded on the real k-axis. The method is applied to stimulated Raman scattering and sine-Gordon (light cone) for which it is demonstrated that time evolution conserves the properties of the spectral transform.Comment: LaTex file, 1 figure, submitted to J. Phys.

    Darboux transformation for two component derivative nonlinear Schr\"odinger equation

    Full text link
    In this paper, we consider the two component derivative nonlinear Schr\"{o}dinger equation and present a simple Darboux transformation for it. By iterating this Darboux transformation, we construct a compact representation for the NN-soliton solutions.Comment: 12 pages, 2 figure

    Negaton and Positon solutions of the soliton equation with self-consistent sources

    Full text link
    The KdV equation with self-consistent sources (KdVES) is used as a model to illustrate the method. A generalized binary Darboux transformation (GBDT) with an arbitrary time-dependent function for the KdVES as well as the formula for NN-times repeated GBDT are presented. This GBDT provides non-auto-B\"{a}cklund transformation between two KdV equations with different degrees of sources and enable us to construct more general solutions with NN arbitrary tt-dependent functions. By taking the special tt-function, we obtain multisoliton, multipositon, multinegaton, multisoliton-positon, multinegaton-positon and multisoliton-negaton solutions of KdVES. Some properties of these solutions are discussed.Comment: 13 pages, Latex, no figues, to be published in J. Phys. A: Math. Ge

    B\"{a}cklund transformations for the KP and mKP hierarchies with self-consistent sources

    Full text link
    Using gauge transformations for the corresponding generating pseudo-differential operators LnL^n in terms of eigenfunctions and adjoint eigenfunctions, we construct several types of auto-B\"{a}cklund transformations for the KP hierarchy with self-consistent sources (KPHSCS) and mKP hierarchy with self-consistent sources (mKPHSCS) respectively. The B\"{a}cklund transformations from the KPHSCS to mKPHSCS are also constructed in this way.Comment: 22 pages. to appear in J.Phys.

    Generalized Darboux transformations for the KP equation with self-consistent sources

    Full text link
    The KP equation with self-consistent sources (KPESCS) is treated in the framework of the constrained KP equation. This offers a natural way to obtain the Lax representation for the KPESCS. Based on the conjugate Lax pairs, we construct the generalized binary Darboux transformation with arbitrary functions in time tt for the KPESCS which, in contrast with the binary Darboux transformation of the KP equation, provides a non-auto-B\"{a}cklund transformation between two KPESCSs with different degrees. The formula for N-times repeated generalized binary Darboux transformation is proposed and enables us to find the N-soliton solution and lump solution as well as some other solutions of the KPESCS.Comment: 20 pages, no figure

    Perturbation theory for nearly integrable multi-component nonlinear PDEs

    Full text link
    The Riemann-Hilbert problem associated with the integrable PDE is used as a nonlinear transformation of the nearly integrable PDE to the spectral space. The temporal evolution of the spectral data is derived with account for arbitrary perturbations and is given in the form of exact equations, which generate the sequence of approximate ODEs in successive orders with respect to the perturbation. For vector nearly integrable PDEs, embracing the vector NLS and complex modified KdV equations, the main result is formulated in a theorem. For a single vector soliton the evolution equations for the soliton parameters and first-order radiation are given in explicit formComment: Submitted to Journal of Mathematical Physics (References are corrected

    The Solutions of the NLS Equations with Self-Consistent Sources

    Full text link
    We construct the generalized Darboux transformation with arbitrary functions in time tt for the AKNS equation with self-consistent sources (AKNSESCS) which, in contrast with the Darboux transformation for the AKNS equation, provides a non-auto-B\"{a}cklund transformation between two AKNSESCSs with different degrees of sources. The formula for N-times repeated generalized Darboux transformation is proposed. By reduction the generalized Darboux transformation with arbitrary functions in time tt for the Nonlinear Schr\"{o}dinger equation with self-consistent sources (NLSESCS) is obtained and enables us to find the dark soliton, bright soliton and positon solutions for NLS+^{+}ESCS and NLS^{-}ESCS. The properties of these solution are analyzed.Comment: 24 pages, 3 figures, to appear in Journal of Physics A: Mathematical and Genera

    Vibrational Excitations in Weakly Coupled Single-Molecule Junctions: A Computational Analysis

    Full text link
    In bulk systems, molecules are routinely identified by their vibrational spectrum using Raman or infrared spectroscopy. In recent years, vibrational excitation lines have been observed in low-temperature conductance measurements on single molecule junctions and they can provide a similar means of identification. We present a method to efficiently calculate these excitation lines in weakly coupled, gateable single-molecule junctions, using a combination of ab initio density functional theory and rate equations. Our method takes transitions from excited to excited vibrational state into account by evaluating the Franck-Condon factors for an arbitrary number of vibrational quanta, and is therefore able to predict qualitatively different behaviour from calculations limited to transitions from ground state to excited vibrational state. We find that the vibrational spectrum is sensitive to the molecular contact geometry and the charge state, and that it is generally necessary to take more than one vibrational quantum into account. Quantitative comparison to previously reported measurements on pi-conjugated molecules reveals that our method is able to characterize the vibrational excitations and can be used to identify single molecules in a junction. The method is computationally feasible on commodity hardware.Comment: 9 pages, 7 figure

    Algebraic construction of the Darboux matrix revisited

    Full text link
    We present algebraic construction of Darboux matrices for 1+1-dimensional integrable systems of nonlinear partial differential equations with a special stress on the nonisospectral case. We discuss different approaches to the Darboux-Backlund transformation, based on different lambda-dependencies of the Darboux matrix: polynomial, sum of partial fractions, or the transfer matrix form. We derive symmetric N-soliton formulas in the general case. The matrix spectral parameter and dressing actions in loop groups are also discussed. We describe reductions to twisted loop groups, unitary reductions, the matrix Lax pair for the KdV equation and reductions of chiral models (harmonic maps) to SU(n) and to Grassmann spaces. We show that in the KdV case the nilpotent Darboux matrix generates the binary Darboux transformation. The paper is intended as a review of known results (usually presented in a novel context) but some new results are included as well, e.g., general compact formulas for N-soliton surfaces and linear and bilinear constraints on the nonisospectral Lax pair matrices which are preserved by Darboux transformations.Comment: Review paper (61 pages). To be published in the Special Issue "Nonlinearity and Geometry: Connections with Integrability" of J. Phys. A: Math. Theor. (2009), devoted to the subject of the Second Workshop on Nonlinearity and Geometry ("Darboux Days"), Bedlewo, Poland (April 2008
    corecore