221 research outputs found
Pulling a polymer out of a potential well and the mechanical unzipping of DNA
Motivated by the experiments on DNA under torsion, we consider the problem of
pulling a polymer out of a potential well by a force applied to one of its
ends. If the force is less than a critical value, then the process is activated
and has an activation energy proportinal to the length of the chain. Above this
critical value, the process is barrierless and will occur spontaneously. We use
the Rouse model for the description of the dynamics of the peeling out and
study the average behaviour of the chain, by replacing the random noise by its
mean. The resultant mean-field equation is a nonlinear diffusion equation and
hence rather difficult to analyze. We use physical arguments to convert this in
to a moving boundary value problem, which can then be solved exactly. The
result is that the time required to pull out a polymer of segments
scales like . For models other than the Rouse, we argue that Comment: 11 pages, 6 figures. To appear in PhysicalReview
Network development in biological gels: role in lymphatic vessel development
In this paper, we present a model that explains the prepatterning of lymphatic vessel morphology in collagen gels. This model is derived using the theory of two phase rubber material due to Flory and coworkers and it consists of two coupled fourth order partial differential equations describing the evolution of the collagen volume fraction, and the evolution of the proton concentration in a collagen implant; as described in experiments of Boardman and Swartz (Circ. Res. 92, 801–808, 2003). Using linear stability analysis, we find that above a critical level of proton concentration, spatial patterns form due to small perturbations in the initially uniform steady state. Using a long wavelength reduction, we can reduce the two coupled partial differential equations to one fourth order equation that is very similar to the Cahn–Hilliard equation; however, it has more complex nonlinearities and degeneracies. We present the results of numerical simulations and discuss the biological implications of our model
Elasticity of Semiflexible Biopolymer Networks
We develop a model for gels and entangled solutions of semiflexible
biopolymers such as F-actin. Such networks play a crucial structural role in
the cytoskeleton of cells. We show that the rheologic properties of these
networks can result from nonclassical rubber elasticity. This model can explain
a number of elastic properties of such networks {\em in vitro}, including the
concentration dependence of the storage modulus and yield strain.Comment: Uses RevTeX, full postscript with figures available at
http://www.umich.edu/~fcm/preprints/agel/agel.htm
The Middle Way: East Asian masters students’ perceptions of critical argumentation in U.K. universities.
The paper explores the learning experiences of East Asian masters students in dealing with Western academic norms of critical thinking in classroom debate and assignment writing. The research takes a cultural approach, and employs grounded theory and case study methodology, the aims being for students to explain their perceptions of their personal learning journeys. The data suggest that the majority of students interviewed rejected full academic acculturation into Western norms of argumentation. They instead opted for a ‘Middle Way’ that synergizes the traditional cultural academic values held by many East Asian students with those elements of Western academic norms that are perceived to be aligned with these. This is a relatively new area of research which represents a challenge for British lecturers and students
Screening of Hydrodynamic Interactions in Semidilute Polymer Solutions: A Computer Simulation Study
We study single-chain motion in semidilute solutions of polymers of length N
= 1000 with excluded-volume and hydrodynamic interactions by a novel algorithm.
The crossover length of the transition from Zimm (short lengths and times) to
Rouse dynamics (larger scales) is proportional to the static screening length.
The crossover time is the corresponding Zimm time. Our data indicate Zimm
behavior at large lengths but short times. There is no hydrodynamic screening
until the chains feel constraints, after which they resist the flow:
"Incomplete screening" occurs in the time domain.Comment: 3 figure
Renormalized kinetic theory of classical fluids in and out of equilibrium
We present a theory for the construction of renormalized kinetic equations to
describe the dynamics of classical systems of particles in or out of
equilibrium. A closed, self-consistent set of evolution equations is derived
for the single-particle phase-space distribution function , the correlation
function , the retarded and advanced density response
functions to an external potential , and
the associated memory functions . The basis of the theory is an
effective action functional of external potentials that
contains all information about the dynamical properties of the system. In
particular, its functional derivatives generate successively the
single-particle phase-space density and all the correlation and density
response functions, which are coupled through an infinite hierarchy of
evolution equations. Traditional renormalization techniques are then used to
perform the closure of the hierarchy through memory functions. The latter
satisfy functional equations that can be used to devise systematic
approximations. The present formulation can be equally regarded as (i) a
generalization to dynamical problems of the density functional theory of fluids
in equilibrium and (ii) as the classical mechanical counterpart of the theory
of non-equilibrium Green's functions in quantum field theory. It unifies and
encompasses previous results for classical Hamiltonian systems with any initial
conditions. For equilibrium states, the theory reduces to the equilibrium
memory function approach. For non-equilibrium fluids, popular closures (e.g.
Landau, Boltzmann, Lenard-Balescu) are simply recovered and we discuss the
correspondence with the seminal approaches of Martin-Siggia-Rose and of
Rose.and we discuss the correspondence with the seminal approaches of
Martin-Siggia-Rose and of Rose.Comment: 63 pages, 10 figure
Field theoretic approach to metastability in the contact process
A quantum field theoretic formulation of the dynamics of the Contact Process
on a regular graph of degree z is introduced. A perturbative calculation in
powers of 1/z of the effective potential for the density of particles phi(t)
and an instantonic field psi(t) emerging from the quantum formalism is
performed. Corrections to the mean-field distribution of densities of particles
in the out-of-equilibrium stationary state are derived in powers of 1/z.
Results for typical (e.g. average density) and rare fluctuation (e.g. lifetime
of the metastable state) properties are in very good agreement with numerical
simulations carried out on D-dimensional hypercubic (z=2D) and Cayley lattices.Comment: Final published version; 20 pages, 5 figure
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment
This paper describes an analysis of the angular distribution of W->enu and
W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with
the ATLAS detector at the LHC in 2010, corresponding to an integrated
luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and
the missing transverse energy, the W decay angular distribution projected onto
the transverse plane is obtained and analysed in terms of helicity fractions
f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV
and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw
> 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour,
are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017
+/- 0.030, where the first uncertainties are statistical, and the second
include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables,
revised author list, matches European Journal of Physics C versio
Observation of a new chi_b state in radiative transitions to Upsilon(1S) and Upsilon(2S) at ATLAS
The chi_b(nP) quarkonium states are produced in proton-proton collisions at
the Large Hadron Collider (LHC) at sqrt(s) = 7 TeV and recorded by the ATLAS
detector. Using a data sample corresponding to an integrated luminosity of 4.4
fb^-1, these states are reconstructed through their radiative decays to
Upsilon(1S,2S) with Upsilon->mu+mu-. In addition to the mass peaks
corresponding to the decay modes chi_b(1P,2P)->Upsilon(1S)gamma, a new
structure centered at a mass of 10.530+/-0.005 (stat.)+/-0.009 (syst.) GeV is
also observed, in both the Upsilon(1S)gamma and Upsilon(2S)gamma decay modes.
This is interpreted as the chi_b(3P) system.Comment: 5 pages plus author list (18 pages total), 2 figures, 1 table,
corrected author list, matches final version in Physical Review Letter
- …