91 research outputs found

    Complete Genome Sequences of Human Immunodeficiency Type 1 Viruses Genetically Engineered To Be Tropic for Rhesus Macaques

    Get PDF
    We have constructed two human immunodeficiency type 1 (HIV-1) derivatives, CXCR4 tropic and CCR5 tropic, that replicate in rhesus macaques. They are genetically engineered to be resistant to macaque restriction factors against HIV-1, including TRIM5α, APOBEC3, and tetherin proteins. The two HIV-1 variants described here are fundamental clones aiming for rhesus infection studies of HIV-1

    Nucleotide Variations Affect vif/Vif Expression

    Get PDF
    Vif is required for HIV-1 replication in natural target cells by counteracting host restriction factors, APOBEC3 (A3) proteins. We recently demonstrated that Vif expression level can be changed by naturally occurring single-nucleotide variations within SA1D2prox of the HIV-1 genome. We also found that levels for vif/vpr mRNAs are inversely correlated. While amino acid sequence per se is critical for functionality, Vif expression level modulated by signal sequences in its coding region is likely to be important as well. There are two splicing sites in the region involved in vpr expression. To reveal possible fluctuations of Vif-expression level, we examined SA1D2prox and vif gene by chimeric approaches using HIV-1 subtypes B and C with distinct anti-A3 activity. In this report, recombinant clones in subtype B backbone carrying chimeric sequences with respect to SA1D2prox/vif and those within the vif-coding region were generated. Of these, clones containing vif-coding sequence of subtype C, especially its 3′ region, expressed vif/Vif at a decreased level but did at an increased level for vpr/Vpr. Clones with reduced vif/Vif level grew similarly or slightly better than a parental clone in weakly A3G-positive cells but more poorly in highly A3G-expressing cells. Three clones with this property were also tested for their A3-degrading activity. One of the clones appeared to have some defect in addition to the poor ability to express vif/Vif. Taken all together, our results show that natural variations in the SA1D2prox and vif-coding region can change the Vif-expression level and affect the HIV-1 replication potential

    Interdomain Linker of HIV/SIV Gag-CA

    Get PDF
    Gag proteins underlie retroviral replication by fulfilling numerous functional roles at various stages during viral life cycle. Out of the four mature proteins, Gag-capsid (CA) is a major component of viral particles, and has been most well studied biogenetically, biochemically and structurally. Gag-CA is composed of two structured domains, and also of a short stretch of disordered and flexible interdomain linker. While the two domains, namely, N-terminal and C-terminal domains (NTD and CTD), have been the central target for Gag research, the linker region connecting the two has been poorly studied. We recently have performed systemic mutational analyses on the Gag-CA linker region of HIV-1 by various experimental and in silico systems. In total, we have demonstrated that the linker region acts as a cis-modulator to optimize the Gag-related viral replication process. We also have noted, during the course of conducting the research project, that HIV-1 and SIVmac, belonging to distinct primate lentiviral lineages, share a similarly biologically active linker region with each other. In this brief article, we summarize and report the results obtained by mutational studies that are relevant to the functional significance of the interdomain linker of HIV/SIV Gag-CA. Based on this investigation, we discuss about the future directions of the research in this line

    Search for Molecules against HIV-CA

    Get PDF
    Varieties of in vitro systems have been used to study biochemical properties of human immunodeficiency virus Gag-capsid protein (HIV Gag-CA). Recently, we have comparatively characterized HIV-1 and HIV-2 Gag-CA proteins using such technology, and have demonstrated that the NaCl-initiated CA-polymerization in vitro and the stability of CA N-terminal domain as judged by differential scanning fluorimetry (DSF) are inversely correlated. In this study, we found that ZnCl2 works as a competent initiator of the in vitro HIV-1 CA-polymerization at much lower concentrations than those of NaCl frequently used for the polymerization initiation. We also showed by DSF assays that ZnCl2 highly destabilize HIV-1 CA. Furthermore, PF74, a well-known inducer of premature HIV-1 uncoating in infected cells, was demonstrated to unusually promote the HIV-1 CA-disassembly in the presence of ZnCl2 as revealed by DSF assays. Taken together, we conclude that the DSF method may be useful as an efficient monitoring system to screen anti-HIV-1 CA molecules

    Phylogenetic Insights into RT and Vpx/Vpr

    Get PDF
    The efficiency of reverse transcription to synthesize viral DNA in infected cells greatly influences replication kinetics of retroviruses. However, viral replication in non-dividing cells such as resting T cells and terminally differentiated macrophages is potently and kinetically restricted by a host antiviral factor designated SAMHD1 (sterile alpha motif and HD-domain containing protein 1). SAMHD1 reduces cellular deoxynucleoside triphosphate (dNTP) pools and affects viral reverse transcription step. Human immunodeficiency virus type 2 (HIV-2) and some simian immunodeficiency viruses (SIVs) have Vpx or Vpr to efficiently degrade SAMHD1. Interestingly, the reverse transcriptase (RT) derived from HIV-1 that encodes no anti-SAMHD1 proteins has been previously demonstrated to uniquely exhibit a high enzymatic activity. It is thus not irrational to assume that some viruses may have acquired or lost the specific RT property to better adapt themselves to the low dNTP environments confronted in non-dividing cells. This adaptation process may probably be correlated with the SAMHD1-antagonizing ability by viruses. In this report, we asked whether such adaptive events can be inferable from Vpx/Vpr and RT phylogenetic trees overlaid with SAMHD1-degrading capacity of Vpx/Vpr and with kinetic characteristics of RT. Resultant two trees showed substantially similar clustering patterns, and therefore suggested that the properties of RT and Vpx/Vpr can be linked. In other words, HIV/SIVs may possess their own RT proteins to adequately react to various dNTP circumstances in target cells

    Coronavirus Diversification

    Get PDF
    Human coronaviruses (HCoVs) are of zoonotic origins, and seven distinct HCoVs are currently known to infect humans. While the four seasonal HCoVs appear to be mildly pathogenic and circulate among human populations, the other three designated SARS-CoV, MERS-CoV, and SARS-CoV-2 can cause severe diseases in some cases. The newly identified SARS-CoV-2, a causative virus of COVID-19 that can be deadly, is now spreading worldwide much more efficiently than the other two pathogenic viruses. Despite evident differences in these properties, all HCoVs commonly have an exceptionally large genomic RNA with a rather peculiar gene organization and have the potential to readily alter their biological properties. CoVs are characterized by their biological diversifications, high recombination, and efficient adaptive evolution. We are particularly concerned about the high replication and transmission nature of SARS-CoV-2, which may lead to the emergence of more transmissible and/or pathogenic viruses than ever before. Furthermore, novel variant viruses may appear at any time from the CoV pools actively circulating or persistently being maintained in the animal reservoirs, and from the CoVs in infected human individuals. In this review, we describe knowns of the CoVs and then mention their unknowns to clarify the major issues to be addressed. Genome organizations and sequences of numerous CoVs have been determined, and the viruses are presently classified into separate phylogenetic groups. Functional roles in the viral replication cycle in vitro of non-structural and structural proteins are also quite well understood or suggested. In contrast, those in the in vitro and in vivo replication for various accessory proteins encoded by the variable 3' one-third portion of the CoV genome mostly remain to be determined. Importantly, the genomic sequences/structures closely linked to the high CoV recombination are poorly investigated and elucidated. Also, determinants for adaptation and pathogenicity have not been systematically investigated. We summarize here these research situations. Among conceivable projects, we are especially interested in the underlying molecular mechanism by which the observed CoV diversification is generated. Finally, as virologists, we discuss how we handle the present difficulties and propose possible research directions in the medium or long term

    Growth properties of macaque-tropic HIV-1 clones carrying vpr/vpx genes derived from simian immunodeficiency viruses in place of their vpr regions

    Get PDF
    We have previously generated a macaque-tropic human immunodeficiency virus type 1 (HIV-1mt) clone designated MN4/LSDQgtu by genetic manipulation from a parental virus that replicates poorly in rhesus macaque cells. In rhesus cell line M1.3S and peripheral blood mononuclear cells (PBMCs), MN4/LSDQgtu grows comparably to a standard simian immunodeficiency virus clone derived from the rhesus macaque (SIVmac239) that can induce the acquired immunodeficiency syndrome (AIDS) in the animals. In this study, we further modified the Vpr-coding region of MN4/LSDQgtu genome by introducing vpr gene of an SIV clone from the greater spot-nosed monkey (SIVgsn166) or vpx gene of SIVmac239 to generate four new clones for determining functional importance of the central genomic area. Furthermore, two clones with an additional Gag-p6 mutation were made to ensure the virion-packaging of Vpx. In addition, accessory gene mutant clones of MN4/LSDQgtu with a frame-shift mutation, including a vpr mutant, were constructed and their growth properties were examined. Infection experiments showed that newly constructed viruses all grew poorly to various degrees in M1.3S cells, relative to MN4/LSDQgtu. Together with the previous data, our results here show that vpr/vpx gene in the appropriate context of HIV-1 genome is critical for viral growth ability

    Structural Modeling of HIV-1 Env-gp120

    Get PDF
    Variable V1/V2 and V3 loops on human immunodeficiency virus type 1 (HIV-1) envelope-gp120 core play key roles in modulating viral competence to recognize two infection receptors, CD4 and chemokine-receptors. However, molecular bases for the modulation largely remain unclear. To address these issues, we constructed structural models for a full-length gp120 in CD4-free and -bound states. The models showed topologies of gp120 surface loop that agree with those in reported structural data. Molecular dynamics simulation showed that in the unliganded state, V1/V2 loop settled into a thermodynamically stable arrangement near V3 loop for conformational masking of V3 tip, a potent neutralization epitope. In the CD4-bound state, however, V1/V2 loop was rearranged near the bound CD4 to support CD4 binding. In parallel, cell-based adaptation in the absence of anti-viral antibody pressures led to the identification of amino acid substitutions that individually enhance viral entry and growth efficiencies in association with reduced sensitivity to CCR5 antagonist TAK-779. Notably, all these substitutions were positioned on the receptors binding surfaces in V1/V2 or V3 loop. In silico structural studies predicted some physical changes of gp120 by substitutions with alterations in viral replication phenotypes. These data suggest that V1/V2 loop is critical for creating a gp120 structure that masks co-receptor binding site compatible with maintenance of viral infectivity, and for tuning a functional balance of gp120 between immune escape ability and infectivity to optimize HIV-1 replication fitness
    • …
    corecore