15 research outputs found

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Management of large vestibular schwannoma. Part II. Primary Gamma Knife surgery: radiological and clinical aspects

    No full text
    Object. In large vestibular schwannomas (VSs), microsurgery is the main treatment option. A wait-and-scan policy or radiosurgery are generally not recommended given concerns of further lesion growth or increased mass effect due to transient swelling. Note, however, that some patients do not present with symptomatic mass effect or may still have serviceable hearing. Moreover, others may be old, suffer from severe comorbidity, or refuse any surgery. In this study the authors report the results in patients with large, growing VSs primarily treated with Gamma Knife surgery (GKS), with special attention to volumetric growth, control rate, and symptoms. Methods. The authors retrospectively analyzed 33 consecutive patients who underwent GKS for large, growing VSs, which were defined as > 6 cm(3) and at least indenting the brainstem. Patients with neurofibromatosis Type 2 were excluded from analysis, as were patients who had undergone previous treatment. Volume measurements were performed on contrast-enhanced T1-weighted MR images at the time of GKS and during follow-up. Medical charts were analyzed for clinical symptoms. Results. Radiological growth control was achieved in 88% of cases, clinical control (that is, no need for further treatment) in 79% of cases. The median follow-up was 30 months, and the mean VS volume was 8.8 cm(3) (range 6.1-17.7 cm(3)). No major complications occurred, although ventriculoperitoneal shunts were placed in 2 patients. The preservation of serviceable hearing and facial and trigeminal nerve function was achieved in 58%, 91%, and 86% of patients, respectively, with any facial and trigeminal neuropathy being transient. In 92% of the patients presenting with trigeminal hypesthesia before GKS, the condition resolved during follow-up. No patient-or VS-related feature was correlated with growth. Conclusions. Primary GKS for large VSs leads to acceptable radiological growth rates and clinical control rates, with the chance of hearing preservation. Although a higher incidence of clinical control failure and postradiosurgical morbidity is noted, as compared with that for smaller VSs, primary radiosurgery is suitable for a selected group of patients. The absence of symptomatology due to mass effect on the brainstem or cerebellum is essential, as are close clinical and radiological follow-ups, because there is little reserve for growth or swelling. (DOI: 10.3171/2011.6.JNS101963

    Feasibility of primary tumor culture models and preclinical prediction assays for head and neck cancer : A narrative review

    No full text
    Primary human tumor culture models allow for individualized drug sensitivity testing and are therefore a promising technique to achieve personalized treatment for cancer patients. This would especially be of interest for patients with advanced stage head and neck cancer. They are extensively treated with surgery, usually in combination with high-dose cisplatin chemoradiation. However, adding cisplatin to radiotherapy is associated with an increase in severe acute toxicity, while conferring only a minor overall survival benefit. Hence, there is a strong need for a preclinical model to identify patients that will respond to the intended treatment regimen and to test novel drugs. One of such models is the technique of culturing primary human tumor tissue. This review discusses the feasibility and success rate of existing primary head and neck tumor culturing techniques and their corresponding chemo- and radiosensitivity assays. A comprehensive literature search was performed and success factors for culturing in vitro are debated, together with the actual value of these models as preclinical prediction assay for individual patients. With this review, we aim to fill a gap in the understanding of primary culture models from head and neck tumors, with potential importance for other tumor types as well

    Feasibility of primary tumor culture models and preclinical prediction assays for head and neck cancer : A narrative review

    Get PDF
    Primary human tumor culture models allow for individualized drug sensitivity testing and are therefore a promising technique to achieve personalized treatment for cancer patients. This would especially be of interest for patients with advanced stage head and neck cancer. They are extensively treated with surgery, usually in combination with high-dose cisplatin chemoradiation. However, adding cisplatin to radiotherapy is associated with an increase in severe acute toxicity, while conferring only a minor overall survival benefit. Hence, there is a strong need for a preclinical model to identify patients that will respond to the intended treatment regimen and to test novel drugs. One of such models is the technique of culturing primary human tumor tissue. This review discusses the feasibility and success rate of existing primary head and neck tumor culturing techniques and their corresponding chemo- and radiosensitivity assays. A comprehensive literature search was performed and success factors for culturing in vitro are debated, together with the actual value of these models as preclinical prediction assay for individual patients. With this review, we aim to fill a gap in the understanding of primary culture models from head and neck tumors, with potential importance for other tumor types as well
    corecore