923 research outputs found
Genetic parameters for animal mortality in pasture-based, seasonal-calving dairy and beef herds
peer-reviewedIn the absence of informative health and welfare phenotypes, breeding for reduced animal mortality could improve overall health and welfare, provided genetic variability in animal mortality exists. The objective of the present study was to estimate genetic (and other) variance components for animal mortality in pasture-based, seasonal-calving dairy and beef herds across multiple life stages as well as to quantify the genetic relationship in mortality among life stages. National mortality records were available for all cattle born in the Republic of Ireland. Cattle were grouped into three life stages based on age (0 to 30 days, 31 to 365 days, 366 to 1095 days) whereas females with ≥1 calving event were also grouped into five life stages, based on parity number (1, 2, 3, 4, and 5), considering both the initial 60 days of lactation and a cow's entire lactation period, separately. The mean mortality prevalence ranged from 0.70 to 5.79% in young animals and from 0.53 to 3.86% in cows. Variance components and genetic correlations were estimated using linear mixed models using 21,637 to 100,993 records. Where heritability estimates were different from zero, direct heritability estimates for mortality in young animals (≤1095 days) ranged from 0.006 to 0.040, whereas the genetic standard deviation ranged from 0.015 to 0.034. The contribution of a maternal genetic effect to mortality in young animals was evident up to 30 days of age in dairy herds, but this was only the case in preliminary analysis of stillbirths in beef herds. Based on the estimated genetic standard deviation in the present study, the incidence of mortality in young animals could be reduced through breeding by up to 3.4 percentage units per generation. For cows, direct heritability estimates for mortality, where different from zero, ranged from 0.003 to 0.049. The genetic standard deviation for mortality in cows ranged from 0.005 to 0.016 during the initial 60 days of lactation and ranged from 0.011 to 0.032 during the cow's entire lactation. Genetic correlations among the age groups as well as between the age groups and cow parities had high standard errors. Genetic correlations among the cow parities were moderate to strongly positive (ranging from 0.66 to 0.99) and mostly different from zero. Results from the present study can be used to inform genetic evaluations for mortality in young animals and in cows as well as the potential genetic gain achievable
Quantum Computation as Geometry
Quantum computers hold great promise, but it remains a challenge to find
efficient quantum circuits that solve interesting computational problems. We
show that finding optimal quantum circuits is essentially equivalent to finding
the shortest path between two points in a certain curved geometry. By recasting
the problem of finding quantum circuits as a geometric problem, we open up the
possibility of using the mathematical techniques of Riemannian geometry to
suggest new quantum algorithms, or to prove limitations on the power of quantum
computers.Comment: 13 Pages, 1 Figur
Superficial acral fibromyxoma
AbstractWe present a case of a superficial acral fibromyxoma (SAFM) of the distal aspect of the thumb with radiographic evidence of extrinsic pressure erosion of the underlying cortex. This 47-year-old woman presented with a slow-growing mass over the distal aspect of the right thumb that proved to be SAFM on surgical pathology. This is a relatively rare mesenchymal neoplasm of the periungual and subungual regions of fingers and toes
Adaptive homodyne measurement of optical phase
We present an experimental demonstration of the power of real-time feedback
in quantum metrology, confirming a theoretical prediction by Wiseman regarding
the superior performance of an adaptive homodyne technique for single-shot
measurement of optical phase. For phase measurements performed on weak coherent
states with no prior knowledge of the signal phase, we show that the variance
of adaptive homodyne estimation approaches closer to the fundamental quantum
uncertainty limit than any previously demonstrated technique. Our results
underscore the importance of real-time feedback for reaching quantum
performance limits in coherent telecommunication, precision measurement and
information processing.Comment: RevTex4, color PDF figures (separate files), submitted to PR
Entanglement of indistinguishable particles in condensed matter physics
The concept of entanglement in systems where the particles are
indistinguishable has been the subject of much recent interest and controversy.
In this paper we study the notion of entanglement of particles introduced by
Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] in several specific
physical systems, including some that occur in condensed matter physics. The
entanglement of particles is relevant when the identical particles are
itinerant and so not distinguished by their position as in spin models. We show
that entanglement of particles can behave differently to other approaches that
have been used previously, such as entanglement of modes (occupation-number
entanglement) and the entanglement in the two-spin reduced density matrix. We
argue that the entanglement of particles is what could actually be measured in
most experimental scenarios and thus its physical significance is clear. This
suggests entanglement of particles may be useful in connecting theoretical and
experimental studies of entanglement in condensed matter systems.Comment: 13 pages, 6 figures, comments welcome, published version (minor
changes, added references
COLLABORATIVE BEHAVIOURS DRIVING EFFECTIVE INNOVATION: AN EXPLORATORY STUDY (25)
This paper focuses on an imaginative internship programme, named Extreme Blue®, which has been introduced by IBM® to help them identify high potential, future graduate level recruits, by getting teams of internees to work together on practical computing projects, for some of IBM’s key collaborative partners and potential customers1 . The research team were given full access to the Extreme Blue participants, and they used a qualitative research approach, based upon interviews, observations and document reviews, to investigate the nature and effectiveness of the software development approaches that were adopted. The key finding was that the Extreme Blue initiative enabled groups of inexperienced, undergraduate internees, to be melded into effective software development teams, in a very short period of time. Moreover, this exploratory study makes a potentially important contribution to the software development literature by providing important new insights regarding an approach, which can deliver timely and effective software solutions, which are both innovative and have the potential to deliver real business value. The study also makes a potential contribution to the developing literature on graduate recruitment in the IS sphere, by answering the question: how can organisations improve their ability to identify and attract the very best graduate, to be employed in technically-oriented roles
Prevalence of pathogens causing subclinical mastitis in 15 dairy herds in the Republic of Ireland
<p/> <p>Milk samples from 285 cows in 15 dairy herds were collected for bacteriological analysis. Cows were selected on the basis of a somatic cell count (SCC) exceeding 200,000 cells per ml at the three most recent milk recordings prior to sampling. <it>Staphylococcus aureus </it>and <it>Streptococcus uberis </it>were the predominant isolates accounting for 21% (n = 61) and 19% (n = 53) of isolates, respectively. <it>Streptococcus uberis </it>was more frequently isolated from split-calving herds than from spring-calving herds and this difference was statistically significant (P < 0.005). Herds with suboptimal housing had a significantly greater prevalence of <it>S. uberis </it>than did herds where housing was adequate (P < 0.005). The isolation rates for <it>S. aureus </it>was significantly greater in herds where parlour hygiene was suboptimal (P < 0.05).</p
Fast spin exchange between two distant quantum dots
The Heisenberg exchange interaction between neighboring quantum dots allows
precise voltage control over spin dynamics, due to the ability to precisely
control the overlap of orbital wavefunctions by gate electrodes. This allows
the study of fundamental electronic phenomena and finds applications in quantum
information processing. Although spin-based quantum circuits based on
short-range exchange interactions are possible, the development of scalable,
longer-range coupling schemes constitutes a critical challenge within the
spin-qubit community. Approaches based on capacitative coupling and
cavity-mediated interactions effectively couple spin qubits to the charge
degree of freedom, making them susceptible to electrically-induced decoherence.
The alternative is to extend the range of the Heisenberg exchange interaction
by means of a quantum mediator. Here, we show that a multielectron quantum dot
with 50-100 electrons serves as an excellent mediator, preserving speed and
coherence of the resulting spin-spin coupling while providing several
functionalities that are of practical importance. These include speed (mediated
two-qubit rates up to several gigahertz), distance (of order of a micrometer),
voltage control, possibility of sweet spot operation (reducing susceptibility
to charge noise), and reversal of the interaction sign (useful for dynamical
decoupling from noise).Comment: 6 pages including 4 figures, plus 8 supplementary pages including 5
supplementary figure
- …