1,426 research outputs found
"Ultimate state" of two-dimensional Rayleigh-Benard convection between free-slip fixed temperature boundaries
Rigorous upper limits on the vertical heat transport in two dimensional
Rayleigh-Benard convection between stress-free isothermal boundaries are
derived from the Boussinesq approximation of the Navier-Stokes equations. The
Nusselt number Nu is bounded in terms of the Rayleigh number Ra according to
uniformly in the Prandtl number Pr. This Nusselt
number scaling challenges some theoretical arguments regarding the asymptotic
high Rayleigh number heat transport by turbulent convection.Comment: 4 page
Variational bounds on the energy dissipation rate in body-forced shear flow
A new variational problem for upper bounds on the rate of energy dissipation
in body-forced shear flows is formulated by including a balance parameter in
the derivation from the Navier-Stokes equations. The resulting min-max problem
is investigated computationally, producing new estimates that quantitatively
improve previously obtained rigorous bounds. The results are compared with data
from direct numerical simulations.Comment: 15 pages, 7 figure
Variational bound on energy dissipation in turbulent shear flow
We present numerical solutions to the extended Doering-Constantin variational
principle for upper bounds on the energy dissipation rate in plane Couette
flow, bridging the entire range from low to asymptotically high Reynolds
numbers. Our variational bound exhibits structure, namely a pronounced minimum
at intermediate Reynolds numbers, and recovers the Busse bound in the
asymptotic regime. The most notable feature is a bifurcation of the minimizing
wavenumbers, giving rise to simple scaling of the optimized variational
parameters, and of the upper bound, with the Reynolds number.Comment: 4 pages, RevTeX, 5 postscript figures are available as one .tar.gz
file from [email protected]
Diffusion-Limited Aggregation Processes with 3-Particle Elementary Reactions
A diffusion-limited aggregation process, in which clusters coalesce by means
of 3-particle reaction, A+A+A->A, is investigated. In one dimension we give a
heuristic argument that predicts logarithmic corrections to the mean-field
asymptotic behavior for the concentration of clusters of mass at time ,
, for . The total
concentration of clusters, , decays as at . We also investigate the problem with a localized steady source of
monomers and find that the steady-state concentration scales as
, , and , respectively,
for the spatial dimension equal to 1, 2, and 3. The total number of
clusters, , grows with time as , , and
for = 1, 2, and 3. Furthermore, in three dimensions we
obtain an asymptotic solution for the steady state cluster-mass distribution:
, with the scaling function
and the scaling variable .Comment: 12 pages, plain Te
Variational bound on energy dissipation in plane Couette flow
We present numerical solutions to the extended Doering-Constantin variational
principle for upper bounds on the energy dissipation rate in turbulent plane
Couette flow. Using the compound matrix technique in order to reformulate this
principle's spectral constraint, we derive a system of equations that is
amenable to numerical treatment in the entire range from low to asymptotically
high Reynolds numbers. Our variational bound exhibits a minimum at intermediate
Reynolds numbers, and reproduces the Busse bound in the asymptotic regime. As a
consequence of a bifurcation of the minimizing wavenumbers, there exist two
length scales that determine the optimal upper bound: the effective width of
the variational profile's boundary segments, and the extension of their flat
interior part.Comment: 22 pages, RevTeX, 11 postscript figures are available as one
uuencoded .tar.gz file from [email protected]
Coherent State path-integral simulation of many particle systems
The coherent state path integral formulation of certain many particle systems
allows for their non perturbative study by the techniques of lattice field
theory. In this paper we exploit this strategy by simulating the explicit
example of the diffusion controlled reaction . Our results are
consistent with some renormalization group-based predictions thus clarifying
the continuum limit of the action of the problem.Comment: 20 pages, 4 figures. Minor corrections. Acknowledgement and reference
correcte
On the universality of a class of annihilation-coagulation models
A class of -dimensional reaction-diffusion models interpolating
continuously between the diffusion-coagulation and the diffusion-annihilation
models is introduced. Exact relations among the observables of different models
are established. For the one-dimensional case, it is shown how correlations in
the initial state can lead to non-universal amplitudes for time-dependent
particles density.Comment: 18 pages with no figures. Latex file using REVTE
Time-stepping approach for solving upper-bound problems: Application to two-dimensional Rayleigh-Benard convection
An alternative computational procedure for numerically solving a class of variational problems arising from rigorous upper-bound analysis of forced-dissipative infinite-dimensional nonlinear dynamical systems, including the Navier-Stokes and Oberbeck-Boussinesq equations, is analyzed and applied to Rayleigh-Benard convection. A proof that the only steady state to which this numerical algorithm can converge is the required global optimal of the relevant variational problem is given for three canonical flow configurations. In contrast with most other numerical schemes for computing the optimal bounds on transported quantities (e.g., heat or momentum) within the "background field" variational framework, which employ variants of Newton's method and hence require very accurate initial iterates, the new computational method is easy to implement and, crucially, does not require numerical continuation. The algorithm is used to determine the optimal background-method bound on the heat transport enhancement factor, i.e., the Nusselt number (Nu), as a function of the Rayleigh number (Ra), Prandtl number (Pr), and domain aspect ratio L in two-dimensional Rayleigh-Benard convection between stress-free isothermal boundaries (Rayleigh's original 1916 model of convection). The result of the computation is significant because analyses, laboratory experiments, and numerical simulations have suggested a range of exponents alpha and beta in the presumed Nu similar to (PrRa beta)-Ra-alpha scaling relation. The computations clearly show that for Ra <= 10(10) at fixed L = 2 root 2, Nu <= 0.106Pr(0)Ra(5/12), which indicates that molecular transport cannot generally be neglected in the "ultimate" high-Ra regime.NSF DMS-0928098 DMS-1515161 DMS-0927587 PHY-1205219Simons FoundationNSFONRInstitute for Computational Engineering and Sciences (ICES
Magnetization precession due to a spin polarized current in a thin nanoelement: numerical simulation study
In this paper a detailed numerical study (in frames of the Slonczewski
formalism) of magnetization oscillations driven by a spin-polarized current
through a thin elliptical nanoelement is presented. We show that a
sophisticated micromagnetic model, where a polycrystalline structure of a
nanoelement is taken into account, can explain qualitatively all most important
features of the magnetization oscillation spectra recently observed
experimentally (S.I. Kiselev et al., Nature, vol. 425, p. 380 (2003), namely:
existence of several equidistant spectral bands, sharp onset and abrupt
disappearance of magnetization oscillations with increasing current, absence of
the out-of-plane regime predicted by a macrospin model and the relation between
frequencies of so called small-angle and quasichaotic oscillations. However, a
quantitative agreement with experimental results (especially concerning the
frequency of quasichaotic oscillations) could not be achieved in the region of
reasonable parameter values, indicating that further model refinement is
necessary for a complete understanding of the spin-driven magnetization
precession even in this relatively simple experimental situation.Comment: Submitted to Phys. Rev. B; In this revised version figure positions
on the page have been changed to ensure correct placements of the figure
caption
Subdiffusion-limited reactions
We consider the coagulation dynamics A+A -> A and A+A A and the
annihilation dynamics A+A -> 0 for particles moving subdiffusively in one
dimension. This scenario combines the "anomalous kinetics" and "anomalous
diffusion" problems, each of which leads to interesting dynamics separately and
to even more interesting dynamics in combination. Our analysis is based on the
fractional diffusion equation
- …