14 research outputs found
Risk-reducing hysterectomy and bilateral salpingo-oophorectomy in female heterozygotes of pathogenic mismatch repair variants: a Prospective Lynch Syndrome Database report
Purpose To determine impact of risk-reducing hysterectomy and bilateral salpingo-oophorectomy (BSO) on gynecological cancer incidence and death in heterozygotes of pathogenic MMR (path_MMR) variants. Methods The Prospective Lynch Syndrome Database was used to investigate the effects of gynecological risk-reducing surgery (RRS) at different ages. Results Risk-reducing hysterectomy at 25 years of age prevents endometrial cancer before 50 years in 15%, 18%, 13%, and 0% of path_MLH1, path_MSH2, path_MSH6, and path_PMS2 heterozygotes and death in 2%, 2%, 1%, and 0%, respectively. Risk-reducing BSO at 25 years of age prevents ovarian cancer before 50 years in 6%, 11%, 2%, and 0% and death in 1%, 2%, 0%, and 0%, respectively. Risk-reducing hysterectomy at 40 years prevents endometrial cancer by 50 years in 13%, 16%, 11%, and 0% and death in 1%, 2%, 1%, and 0%, respectively. BSO at 40 years prevents ovarian cancer before 50 years in 4%, 8%, 0%, and 0%, and death in 1%, 1%, 0%, and 0%, respectively. Conclusion Little benefit is gained by performing RRS before 40 years of age and premenopausal BSO in path_MSH6 and path_PMS2 heterozygotes has no measurable benefit for mortality. These findings may aid decision making for women with LS who are considering RRS.Hereditary cancer genetic
Pathogenesis of DNA repair-deficient cancers: a statistical meta-analysis of putative Real Common Target genes
DNA mismatch repair deficiency is observed in about 15% of human colorectal, gastric, and endometrial tumors and in lower frequencies in a minority of other tumors thereby causing insertion/deletion mutations at short repetitive sequences, recognized as microsatellite instability (MSI). Evolution of tumors, including those with MSI, is a continuous process of mutation and selection favoring neoplastic growth. Mutations in microsatellite-bearing genes that promote tumor cell growth in general (Real Common Target genes) are assumed to be the driving force during MSI carcinogenesis. Thus, microsatellite mutations in these genes should occur more frequently than mutations in microsatellite genes without contribution to malignancy (ByStander genes). So far, only a few Real Common Target genes have been identified by functional studies. Thus, comprehensive analysis of microsatellite mutations will provide important clues to the understanding of MSI-driven carcinogenesis. Here, we evaluated published mutation frequencies on 194 repeat tracts in 137 genes in MSI-H colorectal, endometrial, and gastric carcinomas and propose a statistical model that aims to identify Real Common Target genes. According to our model nine genes including BAX and TGFβRII were identified as Real Common Targets in colorectal cancer, one gene in gastric cancer, and three genes in endometrial cancer. Microsatellite mutations in five additional genes seem to be counterselected in gastrointestinal tumors. Overall, the general applicability, the capacity to unlimited data analysis, the inclusion of mutation data generated by different groups on different sets of tumors make this model a useful tool for predicting Real Common Target genes with specificity for MSI-H tumors of different organs, guiding subsequent functional studies to the most likely targets among numerous microsatellite harboring genes
ASTD: The Alternative Splicing and Transcript Diversity database
The Alternative Splicing and Transcript Diversity database (ASTD) gives access to a vast collection of alternative transcripts that integrate transcription initiation, polyadenylation and splicing variant data. Alternative transcripts are derived from the mapping of transcribed sequences to the complete human, mouse and rat genomes using an extension of the computational pipeline developed for the ASD (Alternative Splicing Database) and ATD (Alternative Transcript Diversity) databases, which are now superseded by ASTD. For the human genome, ASTD identifies splicing variants, transcription initiation variants and polyadenylation variants in 68%, 68% and 62% of the gene set, respectively, consistent with current estimates for transcription variation. Users can access ASTD through a variety of browsing and query tools, including expression state-based queries for the identification of tissue-specific isoforms. Participating labs have experimentally validated a subset of ASTD-predicted alternative splice forms and alternative polyadenylation forms that were not previously reported. The ASTD database is accessed at http://www.ebi.ac.uk/astd
Reliable high risk HPV DNA testing by polymerase chain reaction: an intermethod and intramethod comparison.
BACKGROUND: The development of a reproducible, sensitive, and standardised human papillomavirus (HPV) polymerase chain reaction (PCR) test is required to implement HPV testing in cervical cancer screening programmes and for triaging women with mild to moderate dysplasia. AIMS: To determine the intermethod agreement between different GP5+/6+ and MY09/11 PCR based protocols for the detection and typing of high risk (HR) HPV DNA in cervical smears and to assess the intramethod reproducibility of the GP5+/6+ PCR enzyme immunoassay (EIA) for HR-HPV detection. METHODS: For the intermethod comparison, crude aliquots of 20 well characterised cervical smears comprising five HPV negative samples, and six and nine samples containing single and multiple HPV infections, respectively, were coded and sent from reference laboratory (A) to three other laboratories. One of these (laboratory B) used the GP5+/6+ PCR-EIA and was provided with standard protocols. Another laboratory (C) used GP5+/6+ PCR combined with sequence analysis and type specific PCR, whereas two laboratories (D and E) used MY09/11 PCR followed by restriction fragment length polymorphism (RFLP) analysis for the detection and typing of HR-HPV. The intramethod agreement of GP5+/6+ PCR-EIA was analysed in a subsequent study with four other laboratories (F to I) on crude aliquots of 50 well characterised cervical smears, consisting of 32 HR-HPV positive and 18 HPV negative samples. Standardised protocols, primers, and probes were also provided by the reference laboratory for HR-HPV detection. RESULTS: In the intermethod comparison, pairwise agreement of the different laboratories with reference laboratory A for the detection of HR-HPV varied between 75% and 100% (kappa values: 0.5 to 1). Typing data revealed a broader range in pairwise agreement rates between 32% and 100%. The highest agreement was found between laboratories A and B using standardised protocols and validated reagents. In the intramethod evaluation, pairwise comparison of the laboratories F to I with reference laboratory A revealed excellent agreement rates from 92% to 100% (kappa values: 0.88 to 1.0) with an overall sensitivity of 97.5% (195/200) and specificity of 99.5% (199/200). CONCLUSIONS: The detection of HR-HPV as a group is highly reproducible with GP5+/6+ PCR-EIA provided that standardised protocols and validated reagents are used
No Difference in Colorectal Cancer Incidence or Stage at Detection by Colonoscopy Among 3 Countries With Different Lynch Syndrome Surveillance Policies
Cellular mechanisms in basic and clinical gastroenterology and hepatolog
Associations of Pathogenic Variants in MLH1, MSH2, and MSH6 With Risk of Colorectal Adenomas and Tumors and With Somatic Mutations in Patients With Lynch Syndrome
Contains fulltext :
220040.pdf (Publisher’s version ) (Closed access)BACKGROUND & AIMS: Lynch syndrome is caused by variants in DNA mismatch repair (MMR) genes and associated with an increased risk of colorectal cancer (CRC). In patients with Lynch syndrome, CRCs can develop via different pathways. We studied associations between Lynch syndrome-associated variants in MMR genes and risks of adenoma and CRC and somatic mutations in APC and CTNNB1 in tumors in an international cohort of patients. METHODS: We combined clinical and molecular data from 3 studies. We obtained clinical data from 2747 patients with Lynch syndrome associated with variants in MLH1, MSH2, or MSH6 from Germany, the Netherlands, and Finland who received at least 2 surveillance colonoscopies and were followed for a median time of 7.8 years for development of adenomas or CRC. We performed DNA sequence analyses of 48 colorectal tumors (from 16 patients with mutations in MLH1, 29 patients with mutations in MSH2, and 3 with mutations in MSH6) for somatic mutations in APC and CTNNB1. RESULTS: Risk of advanced adenoma in 10 years was 17.8% in patients with pathogenic variants in MSH2 vs 7.7% in MLH1 (P < .001). Higher proportions of patients with pathogenic variants in MLH1 or MSH2 developed CRC in 10 years (11.3% and 11.4%) than patients with pathogenic variants in MSH6 (4.7%) (P = .001 and P = .003 for MLH1 and MSH2 vs MSH6, respectively). Somatic mutations in APC were found in 75% of tumors from patients with pathogenic variants in MSH2 vs 11% in MLH1 (P = .015). Somatic mutations in CTNNB1 were found in 50% of tumors from patients with pathogenic variants in MLH1 vs 7% in MSH2 (P = .002). None of the 3 tumors with pathogenic variants in MSH6 had a mutation in CTNNB1, but all had mutations in APC. CONCLUSIONS: In an analysis of clinical and DNA sequence data from patients with Lynch syndrome from 3 countries, we associated pathogenic variants in MMR genes with risk of adenoma and CRC, and somatic mutations in APC and CTNNB1 in colorectal tumors. If these findings are confirmed, surveillance guidelines might be adjusted based on MMR gene variants