28 research outputs found

    Revisiting pre-trained remote sensing model benchmarks: resizing and normalization matters

    Full text link
    Research in self-supervised learning (SSL) with natural images has progressed rapidly in recent years and is now increasingly being applied to and benchmarked with datasets containing remotely sensed imagery. A common benchmark case is to evaluate SSL pre-trained model embeddings on datasets of remotely sensed imagery with small patch sizes, e.g., 32x32 pixels, whereas standard SSL pre-training takes place with larger patch sizes, e.g., 224x224. Furthermore, pre-training methods tend to use different image normalization preprocessing steps depending on the dataset. In this paper, we show, across seven satellite and aerial imagery datasets of varying resolution, that by simply following the preprocessing steps used in pre-training (precisely, image sizing and normalization methods), one can achieve significant performance improvements when evaluating the extracted features on downstream tasks -- an important detail overlooked in previous work in this space. We show that by following these steps, ImageNet pre-training remains a competitive baseline for satellite imagery based transfer learning tasks -- for example we find that these steps give +32.28 to overall accuracy on the So2Sat random split dataset and +11.16 on the EuroSAT dataset. Finally, we report comprehensive benchmark results with a variety of simple baseline methods for each of the seven datasets, forming an initial benchmark suite for remote sensing imagery

    Navigating the Web of Misinformation: A Framework for Misinformation Domain Detection Using Browser Traffic

    Full text link
    The proliferation of misinformation and propaganda is a global challenge, with profound effects during major crises such as the COVID-19 pandemic and the Russian invasion of Ukraine. Understanding the spread of misinformation and its social impacts requires identifying the news sources spreading false information. While machine learning (ML) techniques have been proposed to address this issue, ML models have failed to provide an efficient implementation scenario that yields useful results. In prior research, the precision of deployment in real traffic deteriorates significantly, experiencing a decrement up to ten times compared to the results derived from benchmark data sets. Our research addresses this gap by proposing a graph-based approach to capture navigational patterns and generate traffic-based features which are used to train a classification model. These navigational and traffic-based features result in classifiers that present outstanding performance when evaluated against real traffic. Moreover, we also propose graph-based filtering techniques to filter out models to be classified by our framework. These filtering techniques increase the signal-to-noise ratio of the models to be classified, greatly reducing false positives and the computational cost of deploying the model. Our proposed framework for the detection of misinformation domains achieves a precision of 0.78 when evaluated in real traffic. This outcome represents an improvement factor of over ten times over those achieved in previous studies

    Assessment of Differentially Private Synthetic Data for Utility and Fairness in End-to-End Machine Learning Pipelines for Tabular Data

    Full text link
    Differentially private (DP) synthetic data sets are a solution for sharing data while preserving the privacy of individual data providers. Understanding the effects of utilizing DP synthetic data in end-to-end machine learning pipelines impacts areas such as health care and humanitarian action, where data is scarce and regulated by restrictive privacy laws. In this work, we investigate the extent to which synthetic data can replace real, tabular data in machine learning pipelines and identify the most effective synthetic data generation techniques for training and evaluating machine learning models. We investigate the impacts of differentially private synthetic data on downstream classification tasks from the point of view of utility as well as fairness. Our analysis is comprehensive and includes representatives of the two main types of synthetic data generation algorithms: marginal-based and GAN-based. To the best of our knowledge, our work is the first that: (i) proposes a training and evaluation framework that does not assume that real data is available for testing the utility and fairness of machine learning models trained on synthetic data; (ii) presents the most extensive analysis of synthetic data set generation algorithms in terms of utility and fairness when used for training machine learning models; and (iii) encompasses several different definitions of fairness. Our findings demonstrate that marginal-based synthetic data generators surpass GAN-based ones regarding model training utility for tabular data. Indeed, we show that models trained using data generated by marginal-based algorithms can exhibit similar utility to models trained using real data. Our analysis also reveals that the marginal-based synthetic data generator MWEM PGM can train models that simultaneously achieve utility and fairness characteristics close to those obtained by models trained with real data.Comment: arXiv admin note: text overlap with arXiv:2106.1024

    Poverty rate prediction using multi-modal survey and earth observation data

    Full text link
    This work presents an approach for combining household demographic and living standards survey questions with features derived from satellite imagery to predict the poverty rate of a region. Our approach utilizes visual features obtained from a single-step featurization method applied to freely available 10m/px Sentinel-2 surface reflectance satellite imagery. These visual features are combined with ten survey questions in a proxy means test (PMT) to estimate whether a household is below the poverty line. We show that the inclusion of visual features reduces the mean error in poverty rate estimates from 4.09% to 3.88% over a nationally representative out-of-sample test set. In addition to including satellite imagery features in proxy means tests, we propose an approach for selecting a subset of survey questions that are complementary to the visual features extracted from satellite imagery. Specifically, we design a survey variable selection approach guided by the full survey and image features and use the approach to determine the most relevant set of small survey questions to include in a PMT. We validate the choice of small survey questions in a downstream task of predicting the poverty rate using the small set of questions. This approach results in the best performance -- errors in poverty rate decrease from 4.09% to 3.71%. We show that extracted visual features encode geographic and urbanization differences between regions.Comment: In 2023 ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies (COMPASS 23) Short Papers Trac

    Dwelling Type Classification for Disaster Risk Assessment Using Satellite Imagery

    Full text link
    Vulnerability and risk assessment of neighborhoods is essential for effective disaster preparedness. Existing traditional systems, due to dependency on time-consuming and cost-intensive field surveying, do not provide a scalable way to decipher warnings and assess the precise extent of the risk at a hyper-local level. In this work, machine learning was used to automate the process of identifying dwellings and their type to build a potentially more effective disaster vulnerability assessment system. First, satellite imageries of low-income settlements and vulnerable areas in India were used to identify 7 different dwelling types. Specifically, we formulated the dwelling type classification as a semantic segmentation task and trained a U-net based neural network model, namely TernausNet, with the data we collected. Then a risk score assessment model was employed, using the determined dwelling type along with an inundation model of the regions. The entire pipeline was deployed to multiple locations prior to natural hazards in India in 2020. Post hoc ground-truth data from those regions was collected to validate the efficacy of this model which showed promising performance. This work can aid disaster response organizations and communities at risk by providing household-level risk information that can inform preemptive actions.Comment: Accepted for presentation in AI+HADR workshop, Neurips 202

    Rapid building damage assessment workflow: An implementation for the 2023 Rolling Fork, Mississippi tornado event

    Full text link
    Rapid and accurate building damage assessments from high-resolution satellite imagery following a natural disaster is essential to inform and optimize first responder efforts. However, performing such building damage assessments in an automated manner is non-trivial due to the challenges posed by variations in disaster-specific damage, diversity in satellite imagery, and the dearth of extensive, labeled datasets. To circumvent these issues, this paper introduces a human-in-the-loop workflow for rapidly training building damage assessment models after a natural disaster. This article details a case study using this workflow, executed in partnership with the American Red Cross during a tornado event in Rolling Fork, Mississippi in March, 2023. The output from our human-in-the-loop modeling process achieved a precision of 0.86 and recall of 0.80 for damaged buildings when compared to ground truth data collected post-disaster. This workflow was implemented end-to-end in under 2 hours per satellite imagery scene, highlighting its potential for real-time deployment.Comment: In submission to the 2023 ICCV Humanitarian Assistance and Disaster Response Worksho

    Multimodal Foundation Models for Zero-shot Animal Species Recognition in Camera Trap Images

    Full text link
    Due to deteriorating environmental conditions and increasing human activity, conservation efforts directed towards wildlife is crucial. Motion-activated camera traps constitute an efficient tool for tracking and monitoring wildlife populations across the globe. Supervised learning techniques have been successfully deployed to analyze such imagery, however training such techniques requires annotations from experts. Reducing the reliance on costly labelled data therefore has immense potential in developing large-scale wildlife tracking solutions with markedly less human labor. In this work we propose WildMatch, a novel zero-shot species classification framework that leverages multimodal foundation models. In particular, we instruction tune vision-language models to generate detailed visual descriptions of camera trap images using similar terminology to experts. Then, we match the generated caption to an external knowledge base of descriptions in order to determine the species in a zero-shot manner. We investigate techniques to build instruction tuning datasets for detailed animal description generation and propose a novel knowledge augmentation technique to enhance caption quality. We demonstrate the performance of WildMatch on a new camera trap dataset collected in the Magdalena Medio region of Colombia.Comment: 18 pages, 9 figure
    corecore