6,199 research outputs found

    Gapless finite-TT theory of collective modes of a trapped gas

    Full text link
    We present predictions for the frequencies of collective modes of trapped Bose-condensed 87^{87}Rb atoms at finite temperature. Our treatment includes a self-consistent treatment of the mean-field from finite-TT excitations and the anomolous average. This is the first gapless calculation of this type for a trapped Bose-Einstein condensed gas. The corrections quantitatively account for the downward shift in the m=2m=2 excitation frequencies observed in recent experiments as the critical temperature is approached.Comment: 4 pages Latex and 2 postscript figure

    Quantum Vortex in a Vectorial Bose-Einstein Condensate

    Full text link
    Quantum vortices in the multi-component Bose-Einstein condensation (BEC) are investigated theoretically. It is found that three kinds of the vortex configurations are possible and their physical properties are discussed in details, including the density distribution and the spin texture. By using the Bogoliubov theory extended to the three component BEC, the collective modes for these vortices are evaluated. The local vortex stability for these vortices are examined in light of the existence of the negative eigenvalue, yielding a narrow magnetization window for the local intrinsic stable region where the multi-components work together to stabilize a vortex in a self-organized way.Comment: 8 pages, 14 eps figure

    Internal Vortex Structure of a Trapped Spinor Bose-Einstein Condensate

    Get PDF
    The internal vortex structure of a trapped spin-1 Bose-Einstein condensate is investigated. It is shown that it has a variety of configurations depending on, in particular, the ratio of the relevant scattering lengths and the total magnetization.Comment: replacement; minor grammatical corrections but with additional figure

    Bound and resonance states of the nonlinear Schroedinger equation in simple model systems

    Full text link
    The stationary nonlinear Schroedinger equation, or Gross-Pitaevskii equation, is studied for the cases of a single delta potential and a delta-shell potential. These model systems allow analytical solutions, and thus provide useful insight into the features of stationary bound, scattering and resonance states of the nonlinear Schroedinger equation. For the single delta potential, the influence of the potential strength and the nonlinearity is studied as well as the transition from bound to scattering states. Furthermore, the properties of resonance states for a repulsive delta-shell potential are discussed.Comment: 19 pages, 10 figure

    Mean-field dynamics of a Bose-Einstein condensate in a time-dependent triple-well trap: Nonlinear eigenstates, Landau-Zener models and STIRAP

    Full text link
    We investigate the dynamics of a Bose--Einstein condensate (BEC) in a triple-well trap in a three-level approximation. The inter-atomic interactions are taken into account in a mean-field approximation (Gross-Pitaevskii equation), leading to a nonlinear three-level model. New eigenstates emerge due to the nonlinearity, depending on the system parameters. Adiabaticity breaks down if such a nonlinear eigenstate disappears when the parameters are varied. The dynamical implications of this loss of adiabaticity are analyzed for two important special cases: A three level Landau-Zener model and the STIRAP scheme. We discuss the emergence of looped levels for an equal-slope Landau-Zener model. The Zener tunneling probability does not tend to zero in the adiabatic limit and shows pronounced oscillations as a function of the velocity of the parameter variation. Furthermore we generalize the STIRAP scheme for adiabatic coherent population transfer between atomic states to the nonlinear case. It is shown that STIRAP breaks down if the nonlinearity exceeds the detuning.Comment: RevTex4, 7 pages, 11 figures, content extended and title/abstract change

    Microscopic Treatment of Binary Interactions in the Non-Equilibrium Dynamics of Partially Bose-condensed Trapped Gases

    Full text link
    In this paper we use microscopic arguments to derive a nonlinear Schr\"{o}dinger equation for trapped Bose-condensed gases. This is made possible by considering the equations of motion of various anomalous averages. The resulting equation explicitly includes the effect of repeated binary interactions (in particular ladders) between the atoms. Moreover, under the conditions that dressing of the intermediate states of a collision can be ignored, this equation is shown to reduce to the conventional Gross-Pitaevskii equation in the pseudopotential limit. Extending the treatment, we show first how the occupation of excited (bare particle) states affects the collisions, and thus obtain the many-body T-matrix approximation in a trap. In addition, we discuss how the bare particle many-body T-matrix gets dressed by mean fields due to condensed and excited atoms. We conclude that the most commonly used version of the Gross-Pitaevskii equation can only be put on a microscopic basis for a restrictive range of conditions. For partial condensation, we need to take account of interactions between condensed and excited atoms, which, in a consistent formulation, should also be expressed in terms of the many-body T-matrix. This can be achieved by considering fluctuations around the condensate mean field beyond those included in the conventional finite temperature mean field, i.e. Hartree-Fock-Bogoliubov (HFB), theory.Comment: Resolved some problems with printing of figure

    Wave envelopes with second-order spatiotemporal dispersion : I. Bright Kerr solitons and cnoidal waves

    Get PDF
    We propose a simple scalar model for describing pulse phenomena beyond the conventional slowly-varying envelope approximation. The generic governing equation has a cubic nonlinearity and we focus here mainly on contexts involving anomalous group-velocity dispersion. Pulse propagation turns out to be a problem firmly rooted in frames-of-reference considerations. The transformation properties of the new model and its space-time structure are explored in detail. Two distinct representations of exact analytical solitons and their associated conservation laws (in both integral and algebraic forms) are presented, and a range of new predictions is made. We also report cnoidal waves of the governing nonlinear equation. Crucially, conventional pulse theory is shown to emerge as a limit of the more general formulation. Extensive simulations examine the role of the new solitons as robust attractors

    Prevalence and co-infection of Toxoplasma gondii and Neospora caninum in Apodemus sylvaticus in an area relatively free of cats

    Get PDF
    The protozoan parasite Toxoplasma gondii is prevalent worldwide and can infect a remarkably wide range of hosts despite felids being the only definitive host. As cats play a major role in transmission to secondary mammalian hosts, the interaction between cats and these hosts should be a major factor determining final prevalence in the secondary host. This study investigates the prevalence of T. gondii in a natural population of Apodemus sylvaticus collected from an area with low cat density (<2·5 cats/km2). A surprisingly high prevalence of 40·78% (95% CI: 34·07%–47·79%) was observed despite this. A comparable level of prevalence was observed in a previously published study using the same approaches where a prevalence of 59% (95% CI: 50·13%–67·87%) was observed in a natural population of Mus domesticus from an area with high cat density (>500 cats/km2). Detection of infected foetuses frompregnant dams in both populations suggests that congenital transmission may enable persistence of infection in the absence of cats. The prevalences of the related parasite, Neospora caninum were found to be low in both populations (A. sylvaticus: 3·39% (95% CI: 0·12%–6·66%); M. domesticus: 3·08% (95% CI: 0·11%–6·05%)). These results suggest that cat density may have a lower than expected effect on final prevalence in these ecosystems

    Lung cancer screening program factors that influence psychosocial outcomes: A systematic review.

    Get PDF
    OBJECTIVES: Lung cancer screening (LCS) programs are being designed and implemented globally. Early data suggests that the psychosocial impacts of LCS are influenced by program factors, but evidence synthesis is needed. This systematic review aimed to elucidate the impact of service-level factors on psychosocial outcomes to inform optimal LCS program design and future implementation. METHODS: Four databases were searched from inception to July 2023. Inclusion criteria were full-text articles published in English that reported an association between any program factors and psychosocial outcomes experienced during LCS. Study quality was appraised, and findings were synthesised narratively. RESULTS: Thirty-two articles were included; 29 studies were assessed at high or moderate risk of bias. Study designs were RCT (n = 3), pre-post (n = 6), cross-sectional (n = 12), mixed-methods (n = 1), and qualitative (n = 10) studies, and conducted primarily in the USA (n = 25). Findings suggested that targeted interventions can improve smoking-related or decisional psychosocial outcomes (e.g., smoking cessation interventions increase readiness/motivation to quit) but impacts of interventions on other psychological outcomes were varied. There was limited evidence reporting association between service delivery components and psychological outcomes, and results suggested moderation by individual aspects (e.g., expectation of results, baseline anxiety). Opportunities for discussion were key in reducing psychological harm. CONCLUSIONS: Certain program factors are reportedly associated with psychosocial impacts of LCS, but study heterogeneity and quality necessitate more real-world studies. Future work should examine (a) implementation of targeted interventions and high-value discussion during LCS, and (b) optimal methods and timing of risk and result communication, to improve psychosocial outcomes while reducing time burden for clinicians

    Adiabaticity Criterion for Moving Vortices in Dilute Bose-Einstein Condensates

    Full text link
    Considering a moving vortex line in a dilute atomic Bose-Einstein condensate within time-dependent Hartree-Fock-Bogoliubov-Popov theory, we derive a criterion for the quasiparticle excitations to follow the vortex core rigidly. The assumption of adiabaticity, which is crucial for the validity of the stationary self-consistent theories in describing such time-dependent phenomena, is shown to imply a stringent criterion for the velocity of the vortex line. Furthermore, this condition is shown to be violated in the recent vortex precession experiments.Comment: 4 pages, 1 figur
    • …
    corecore