6 research outputs found

    Flushing the Lake Littoral Region: The Interaction of Differential Cooling and Mild Winds

    Get PDF
    The interaction of a uniform cooling rate at the lake surface with sloping bathymetry efficiently drives cross-shore water exchanges between the shallow littoral and deep interior regions. The faster cooling rate of the shallows results in the formation of density-driven currents, known as thermal siphons, that flow downslope until they intrude horizontally at the base of the surface mixed layer. Existing parameterizations of the resulting buoyancy-driven cross-shore transport assume calm wind conditions, which are rarely observed in lakes and thereby restrict their applicability. Here, we examine how moderate winds (≲5 m s −1) affect this convective cross-shore transport. We derive simple analytical solutions that we further test against realistic three-dimensional numerical hydrodynamic simulations of an enclosed stratified basin subject to uniform and steady surface cooling rate and cross-shore winds. We show cross-shore winds modify the convective circulation, stopping or even reversing it in the upwind littoral region and enhancing the cross-shore exchange in the downwind region. The analytical parameterization satisfactorily predicted the magnitude of the simulated offshore unit-width discharges in the upwind and downwind littoral regions. Our scaling expands the previous formulation to a regime where both wind and buoyancy forces drive cross-shore discharges of similar magnitude. This range is defined by the non-dimensional Monin-Obukhov length scale, χMO: 0.1 ≲ χMO ≲ 0.5. The information needed to evaluate the scaling formula can be readily obtained from a traditional set of in situ observations.Swiss National Science Foundation (SNSF) European Commission 175919ETH-Bereich Forschungsanstalte

    Development of overturning circulation in sloping waterbodies due to surface cooling

    Get PDF
    Cooling the surface of freshwater bodies, whose temperatures are above the temperature of maximum density, can generate differential cooling between shallow and deep regions. When surface cooling occurs over a long enough period, the thermally induced cross-shore pressure gradient may drive an overturning circulation, a phenomenon called 'thermal siphon'. However, the conditions under which this process begins are not yet fully characterised. Here, we examine the development of thermal siphons driven by a uniform loss of heat at the air-water interface in sloping, stratified basins. For a two-dimensional framework, we derive theoretical time and velocity scales associated with the transition from Rayleigh-Benard type convection to a horizontal overturning circulation across the shallower sloping basin. This transition is characterised by a three-way horizontal momentum balance, in which the cross-shore pressure gradient balances the inertial terms before reaching a quasi-steady regime. We performed numerical and field experiments to test and show the robustness of the analytical scaling, describe the convective regimes and quantify the cross-shore transport induced by thermal siphons. Our results are relevant for understanding the nearshore fluid dynamics induced by nighttime or seasonal surface cooling in lakes and reservoirs

    Lake surface cooling drives littoral-pelagic exchange of dissolved gases

    Get PDF
    The extent of littoral influence on lake gas dynamics remains debated in the aquatic science community due to the lack of direct quantification of lateral gas transport. The prevalent assumption of diffusive horizontal transport in gas budgets fails to explain anomalies observed in pelagic gas concentrations. Here, we demonstrate through high-frequency measurements in a eutrophic lake that daily convective horizontal circulation generates littoral-pelagic advective gas fluxes one order of magnitude larger than typical horizontal fluxes used in gas budgets. These lateral fluxes are sufficient to redistribute gases at the basin-scale and generate concentration anomalies reported in other lakes. Our observations also contrast the hypothesis of pure, nocturnal littoral-to-pelagic exchange by showing that convective circulation transports gases such as oxygen and methane toward both the pelagic and littoral zones during the daytime. This study challenges the traditional pelagic-centered models of aquatic systems by showing that convective circulation represents a fundamental lateral transport mechanism to be integrated into gas budgets. Cooling-induced horizontal circulation redistributes gases daily between littoral and pelagic lake waters under calm conditions

    Characterization of the bottom turbid layer in a pit lake and its response to convective cooling

    No full text
    Base Mine Lake (BML) is a pit lake used to store the Fluid Fine Tailings (FFT) generated by the oil sands industry, in the Athabasca region (northern Alberta, Canada). It is well studied to try understanding its evolution over time and to determine if an effective separation of the FFT from the cap water will eventually be reached. The mixing mechanisms taking place in the lake and affecting the suspended solids are of particular interest. Turbidity increases at the bottom of the water column suggesting the presence of a turbid layer which might be subject to mixing. The solids concentration exceeds the maximum limit of the sensors and deeper values cannot be recorded which prevents to fully understand the vertical structure of the near FFT interface region. To estimate the suspended solids concentration (CV ) over the entire water column, a laboratory calibration of the turbidity sensors is performed and the linear relationship CV [mg=L] = 0.84 x Turb [NTU] is obtained. This corresponds to concentrations of approximately 200mg=L for the region located just above the peak of turbidity, at the bottom of BML. The point of zero turbidity corresponding to the upper limit of the sensors is estimated at approximately 40 g=L. This value must be considered as a minimum solids concentration for the region located below the peak of turbidity. A small optical device is built using a waterproof camera in order to validate the previous results by applying another method than turbidity. The values obtained are comparable and this visually-based estimation can be useful to better understand turbidity variations. Convective cooling, which is one of the processes possibly affecting the bottom turbid layer during fall turnover, is studied in the laboratory on a kaolinite suspension. A simplified experiment using the melting of an ice cube to generate surface cooling shows the rapid rise of the turbid layer as cold water penetrates across its interface. This results in a decrease of bottom turbidity and an increase of mid-depth turbidity. The convective process is then roughly modelled using plume theory and conservation equations. The results obtained are in the same order of magnitude than the values observed. A more realistic experiment with a more uniform and gradual cooling of the water surface suggests that convective cooling might affect the bottom turbid layer by eroding its interface and slowly entraining particles to the water above

    Seasonality of density currents induced by differential cooling

    Get PDF
    This study was financed by the Swiss National Science Foundation ("Buoyancy driven nearshore transport in lakes" project; HYPOlimnetic THErmal SIphonS, HYPOTHESIS, grant no. 175919).When lakes experience surface cooling, the shallow littoral region cools faster than the deep pelagic waters. The lateral density gradient resulting from this differential cooling can trigger a cold downslope density current that intrudes at the base of the mixed layer during stratified conditions. This process is known as a thermal siphon (TS). TSs flush the littoral region and increase water exchange between nearshore and pelagic zones; thus, they may potentially impact the lake ecosystem. Past observations of TSs in lakes are limited to specific cooling events. Here, we focus on the seasonality of TS-induced lateral transport and investigate how seasonally varying forcing conditions control the occurrence and intensity of TSs. This research interprets 1-year-long TS observations from Rotsee (Switzerland), a small wind-sheltered temperate lake with an elongated shallow region. We demonstrate that TSs occur for more than 50 % of the days from late summer to winter and efficiently flush the littoral region within similar to 10 h. We further quantify the occurrence, intensity, and timing of TSs over seasonal timescales. The conditions for TS formation become optimal in autumn when the duration of the cooling phase is longer than the time necessary to initiate a TS. The decrease in surface cooling by 1 order of magnitude from summer to winter reduces the lateral transport by a factor of 2. We interpret this transport seasonality with scaling relationships relating the daily averaged cross-shore velocity, unit-width discharge, and flushing timescale to the surface buoyancy flux, mixed-layer depth, and lake bathymetry. The timing and duration of diurnal flushing by TSs relate to daily heating and cooling phases. The longer cooling phase in autumn increases the flushing duration and delays the time of maximal flushing relative to the summer diurnal cycle. Given their scalability, the results reported here can be used to assess the relevance of TSs in other lakes and reservoirs.Swiss National Science Foundation (SNSF) European Commission 17591

    Near-bed stratification controls bottom hypoxia in ice-covered alpine lakes

    Get PDF
    In ice-covered lakes, near-bottom oxygen concentration decreases for most of the wintertime, sometimes down to the point that bottom waters become hypoxic. Studies insofar have reached divergent conclusions on whether climate change limits or reinforces the extent and duration of hypoxia under ice, raising the need for a comprehensive understanding of the drivers of the dissolved oxygen (DO) dynamics under lake ice. Using high-temporal resolution time series of DO concentration and temperature across 14 mountain lakes, we showed that the duration of bottom hypoxia under ice varies from 0 to 236 d within lakes and among years. The variability of hypoxia duration was primarily explained by changes in the decay rate of DO above the lake bottom rather than by differences in DO concentration at the ice onset or in the ice-cover duration. We observed that the DO decay rate was primarily linked to physical controls (i.e., deep-water warming) rather than biogeochemical drivers (i.e., proxies for lake or catchment productivity). Using a simple numerical model, we provided a proof-of-concept that the near-bed stratification can be the mechanism tying the DO decay rate to the sediment heat release under the ice. We ultimately showed that the DO decay rate and hypoxia duration are driven by the summer light climate, with faster oxygen decline found under the ice of clearer cryostratified alpine lakes. We derived a framework theorizing how the hypoxia duration might change under the ice of alpine lakes in a warmer climate.ISSN:0024-3590ISSN:1939-559
    corecore