115 research outputs found

    Specialized metabolites and valuable molecules in crop and medicinal plants: The evolution of their use and strategies for their production

    Get PDF
    Plants naturally produce a terrific diversity of molecules, which we exploit for promoting our overall well-being. Plants are also green factories. Indeed, they may be exploited to biosynthesize bioactive molecules, proteins, carbohydrates and biopolymers for sustainable and large-scale production. These molecules are easily converted into commodities such as pharmaceuticals, antioxidants, food, feed and biofuels for multiple industrial processes. Novel plant biotechnological, genetics and metabolic insights ensure and increase the applicability of plant-derived compounds in several industrial sectors. In particular, synergy between disciplines, including apparently distant ones such as plant physiology, pharmacology, ‘omics sciences, bioinformatics and nanotechnology paves the path to novel applications of the so-called molecular farming. We present an overview of the novel studies recently published regarding these issues in the hope to have brought out all the interesting aspects of these published studies

    Changes in phenolics and fatty acids composition and related gene expression during the development from seed to leaves of three cultivated cardoon genotypes

    Get PDF
    Cultivated cardoon (Cynara cardunculus var. altilis) has long been used as a food and medicine remedy and nowadays is considered a functional food. Its leaf bioactive compounds are mostly represented by chlorogenic acids and coumaroyl derivatives, known for their nutritional value and bioactivity. Having antioxidant and hepatoprotective properties, these molecules are used for medicinal purposes. Apart from the phenolic compounds in green tissues, cultivated cardoon is also used for the seed oil, having a composition suitable for the human diet, but also valuable as feedstock for the production of biofuel and biodegradable bioplastics. Given the wide spectrum of valuable cardoon molecules and their numerous industrial applications, a detailed characterization of different organs and tissues for their metabolic profiles as well as an extensive transcriptional analysis of associated key biosynthetic genes were performed to provide a deeper insight into metabolites biosynthesis and accumulation sites. This study aimed to provide a comprehensive analysis of the phenylpropanoids profile through UHPLC-Q-Orbitrap HRMS analysis, of fatty acids content through GC-MS analysis, along with quantitative transcriptional analyses by qRT-PCR of hydroxycinnamoyl-quinate transferase (HQT), stearic acid desaturase (SAD), and fatty acid desaturase (FAD) genes in seeds, hypocotyls, cotyledons and leaves of the cardoon genotypes “Spagnolo”, “Bianco Avorio”, and “Gigante”. Both oil yield and total phenols accumulation in all the tissues and organs indicated higher production in “Bianco Avorio” and “Spagnolo” than in “Gigante”. Antioxidant activity evaluation by DPPH, ABTS, and FRAP assays mirrored total phenols content. Overall, this study provides a detailed analysis of tissue composition of cardoon, enabling to elucidate value-added product accumulation and distribution during plant development and hence contributing to better address and optimize the sustainable use of this natural resource. Besides, our metabolic and transcriptional screening could be useful to guide the selection of superior genotypes

    The Role of Neuropathy Screening Tools in Patients Affected by Fibromyalgia

    Get PDF
    Fibromyalgia syndrome (sFM) is one of the most common causes of chronic pain. This study aimed to assess the presence of small and large fiber impairment in fibromyalgic patients by applying validated scores used in the screening for diabetic neuropathy. The endpoints for the study were the assessment of neuropathy prevalence in sFM patients using the NerveCheck Master (NCM), the Michigan Neuropathy Screening Instrument (MNSI), the Diabetic Neuropathy Symptom (DNS) and the Douleur Neuropathique 4 Questions (DN4). The sample was composed of 46 subjects: subjects with sFM (n = 23) and healthy controls (HC) (n = 23). The positivity rates in each group for DN4 were significantly different (p < 0.001), with a prevalence in symptomatic subjects of 56.3% (n = 9) among sFM individuals. A similar difference was also observed with the DNS total score (p < 0.001). NCM and MNSI did not disclose significant differences between the two groups. This finding seems to confirm the data regarding the prevalence of a neuropathic pain in sFM patients

    An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors

    Get PDF
    Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection

    Differential DNA Methylation Encodes Proliferation and Senescence Programs in Human Adipose-Derived Mesenchymal Stem Cells

    Get PDF
    Adult adipose tissue-derived mesenchymal stem cells (ASCs) constitute a vital population of multipotent cells capable of differentiating into numerous end-organ phenotypes. However, scientific and translational endeavors to harness the regenerative potential of ASCs are currently limited by an incomplete understanding of the mechanisms that determine cell-lineage commitment and stemness. In the current study, we used reduced representation bisulfite sequencing (RRBS) analysis to identify epigenetic gene targets and cellular processes that are responsive to 5′-azacitidine (5′-AZA). We describe specific changes to DNA methylation of ASCs, uncovering pathways likely associated with the enhancement of their proliferative capacity. We identified 4,797 differentially methylated regions (FDR < 0.05) associated with 3,625 genes, of which 1,584 DMRs annotated to the promoter region. Gene set enrichment of differentially methylated promoters identified “phagocytosis,” “type 2 diabetes,” and “metabolic pathways” as disproportionately hypomethylated, whereas “adipocyte differentiation” was the most-enriched pathway among hyper-methylated gene promoters. Weighted coexpression network analysis of DMRs identified clusters associated with cellular proliferation and other developmental programs. Furthermore, the ELK4 binding site was disproportionately hyper-methylated within the promoters of genes associated with AKT signaling. Overall, this study offers numerous preliminary insights into the epigenetic landscape that influences the regenerative capacity of human ASCs

    Breakthrough SARS-CoV-2 infections in MS patients on disease-modifying therapies

    Get PDF
    Background: Patients with multiple sclerosis (pwMS) treated with anti-CD20 or fingolimod showed a reduced humoral response to SARS-CoV-2 vaccines. Objective: In this study we aimed to monitor the risk of breakthrough SARS-CoV-2 infection in pwMS on different disease-modifying therapies (DMTs). Methods: Data on the number of vaccinated patients and the number of patients with a breakthrough infection were retrospectively collected in 27 Italian MS centers. We estimated the rate of breakthrough infections and of infection requiring hospitalization per DMT. Results: 19,641 vaccinated pwMS were included in the database. After a median follow-up of 8 months, we observed 137 breakthrough infections. Compared with other DMTs, the rate of breakthrough infections was significantly higher on ocrelizumab (0.57% vs 2.00%, risk ratio (RR) = 3.55, 95% CI = 2.74-4.58, p &lt; 0.001) and fingolimod (0.58% vs 1.62%, RR = 2.65, 95% CI = 1.75-4.00, p &lt; 0.001), while there were no significant differences in any other DMT group. In the ocrelizumab group the hospitalization rate was 16.7% versus 19.4% in the pre-vaccination era (RR = 0.86, p = 0.74) and it was 3.9% in all the other DMT groups versus 11.9% in the pre-vaccination period (RR = 0.33, p = 0.02). Conclusions: The risk of breakthrough SARS-CoV-2 infections is higher in patients treated with ocrelizumab and fingolimod, and the rate of severe infections was significantly reduced in all the DMTs excluding ocrelizumab

    Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes

    Get PDF
    [EN] Brinjal (Solanum melongena), scarlet (S. aethiopicum) and gboma (S. macrocarpon) eggplants are three Old World domesticates. The genomic DNA of a collection of accessions belonging to the three cultivated species, along with a representation of various wild relatives, was characterized for the presence of single nucleotide polymorphisms (SNPs) using a genotype-by-sequencing approach. A total of 210 million useful reads were produced and were successfully aligned to the reference eggplant genome sequence. Out of the 75,399 polymorphic sites identified among the 76 entries in study, 12,859 were associated with coding sequence. A genetic relationships analysis, supported by the output of the FastSTRUCTURE software, identified four major sub-groups as present in the germplasm panel. The first of these clustered S. aethiopicum with its wild ancestor S. anguivi; the second, S. melongena, its wild progenitor S. insanum, and its relatives S. incanum, S. lichtensteinii and S. linneanum; the third, S. macrocarpon and its wild ancestor S. dasyphyllum; and the fourth, the New World species S. sisymbriifolium, S. torvum and S. elaeagnifolium. By applying a hierarchical FastSTRUCTURE analysis on partitioned data, it was also possible to resolve the ambiguous membership of the accessions of S. campylacanthum, S. violaceum, S. lidii, S. vespertilio and S. tomentsum, as well as to genetically differentiate the three species of New World Origin. A principal coordinates analysis performed both on the entire germplasm panel and also separately on the entries belonging to sub-groups revealed a clear separation among species, although not between each of the domesticates and their respective wild ancestors. There was no clear differentiation between either distinct cultivar groups or different geographical provenance. Adopting various approaches to analyze SNP variation provided support for interpretation of results. The genotyping-by-sequencing approach showed to be highly efficient for both quantifying genetic diversity and establishing genetic relationships among and within cultivated eggplants and their wild relatives. The relevance of these results to the evolution of eggplants, as well as to their genetic improvement, is discussed.This work has been funded in part by European Unions Horizon 2020 Research and Innovation Programme under grant agreement No 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and by Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL2015-64755-R from MINECO/FEDER). Funding has also been received from the initiative "Adapting Agriculture to Climate Change: Collecting, Protecting and Preparing Crop Wild Relatives", which is supported by the Government of Norway. This last project is managed by the Global Crop Diversity Trust with the Millennium Seed Bank of the Royal Botanic Gardens, Kew and implemented in partnership with national and international gene banks and plant breeding institutes around the world. For further information see the project website:http://www.cwrdiversity.org/. Pietro Gramazio is grateful to Universitat Politecnica de Valencia for a pre-doctoral (Programa FPI de la UPV-Subprograma 1/2013 call) contract. Mariola Plazas is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Santiago Grisolia Programme (FCJI-2015-24835). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Acquadro, A.; Barchi, L.; Gramazio, P.; Portis, E.; Vilanova Navarro, S.; Comino, C.; Plazas Ávila, MDLO.... (2017). Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLoS ONE. 12(7). https://doi.org/10.1371/journal.pone.0180774Se018077412

    Data monitoring roadmap. The experience of the Italian Multiple Sclerosis and Related Disorders Register

    Get PDF
    Introduction Over the years, disease registers have been increasingly considered a source of reliable and valuable population studies. However, the validity and reliability of data from registers may be limited by missing data, selection bias or data quality not adequately evaluated or checked.This study reports the analysis of the consistency and completeness of the data in the Italian Multiple Sclerosis and Related Disorders Register.MethodsThe Register collects, through a standardized Web-based Application, unique patients.Data are exported bimonthly and evaluated to assess the updating and completeness, and to check the quality and consistency. Eight clinical indicators are evaluated.ResultsThe Register counts 77,628 patients registered by 126 centres. The number of centres has increased over time, as their capacity to collect patients.The percentages of updated patients (with at least one visit in the last 24 months) have increased from 33% (enrolment period 2000-2015) to 60% (enrolment period 2016-2022). In the cohort of patients registered after 2016, there were &gt;= 75% updated patients in 30% of the small centres (33), in 9% of the medium centres (11), and in all the large centres (2).Clinical indicators show significant improvement for the active patients, expanded disability status scale every 6 months or once every 12 months, visits every 6 months, first visit within 1 year and MRI every 12 months.ConclusionsData from disease registers provide guidance for evidence-based health policies and research, so methods and strategies ensuring their quality and reliability are crucial and have several potential applications
    corecore