11 research outputs found

    Structure and Properties of the Multicomponent and Nanostructural Coatings on the Sintered Tool Materials

    Get PDF
    This chapter presents a general characteristic of sintered tool materials, in particular sintered sialons, nitride ceramics, injection-moulded ceramic-metallic tool materials and cemented carbides and a general characteristic of their surface treatment technology and especially chemical vapour deposition (CVD) and physical vapour deposition (PVD) techniques. The results of our investigations in technology foresight methods concerning the development prospects of surface engineering of sintered tool materials are presented. In the next subsection, we discuss the outcomes of multifaceted research carried out with advanced materials engineering methods, including high-resolution transmission electron microscopy, into the structure and properties of multicomponent, graded and multilayer coatings on the investigated tool materials, including the newly developed injection moulded ceramic-metallic tool materials. Special attention was drawn to a one-dimensional structure of the studied PVD and CVD coatings and its impact on the properties of coatings

    Microporous Titanium-Based Materials Coated by Biocompatible Thin Films

    Get PDF
    This chapter presents the outcomes of numerous own works concerning constructional solutions and fabrication technologies of a new generation of custom, original, hybrid, microporous high-strength engineering and biological materials with microporous rigid titanium and Ti6Al4V alloy skeletons manufactured by Selective Laser Sintering (SLS), whose pores are filled with living cells. The so constructed and fabricated implants, in the connection zone with bone stumps, contain a porous zone, with surface treatment inside pores, enabling the living tissues to grow into. As the adhesion and growth of living cells are dependent on the type and characteristic of the substrate it is necessary to create the most advantageous proliferation conditions of living cells inside the pores of a microporous skeleton made of titanium and Ti6Al4V alloy. In order to improve the proliferation conditions of cells ensured by a fully compatible substrate, internal coatings with TiO2, Al2O3 oxides and Ca10(PO4)6(OH)2 hydroxyapatite of the surface of pores of a microporous skeleton made of titanium and Ti6Al4V alloy with SLS was used. Two technologies have been chosen for the deposition of thin coatings onto the internal surfaces of pores: Atomic Layer Deposition (ALD) and the sol-gel of deep coating from the liquid phase

    Fabrication Technologies of the Sintered Materials Including Materials for Medical and Dental Application

    Get PDF
    This chapter of the book presents the basis of classical powder metallurgy technologies and discusses powder fabrication, preparation, preliminary moulding, sintering and finish treatment operations. A general description of the materials and products manufactured with the classical powder metallurgy methods is presented. New variants are characterised along with special and hybrid technologies finding their applications in powder metallurgy. Special attention was drawn to microporous titanium and to TiAl6V4 alloy fabricated using hybrid rapid manufacturing technologies with selective laser sintering/selective laser melting (SLS/SLM) used for innovative implant scaffolds in medicine and regenerative dentistry. Laser deposition, thermal spraying and detonation spraying of powders are also discussed as special methods in which powders of metals and other materials are used as raw materials

    Porous Selective Laser Melted Ti and Ti6Al4V Materials for Medical Applications

    Get PDF
    This chapter characterises scaffolds manufactured in line with the make-to-order concept according to individual needs of each patient. The clinical data acquired from a patient during computer tomography, nuclear magnetic resonance or using traditional plaster casts is converted by a computer into a virtual solid model of a patient’s loss. The model, through the multiplication of a unit cell, is converted into a porous model on the basis of which an actual object is manufactured with the method of selective laser melting (SLM) from Ti/Ti6Al4V powders. The created scaffold is characterised by good mechanical properties, which is confirmed by the results of the performed tensile and compressive strength tests. The material is additionally subjected to surface treatment consisting of the deposition of atomic layers of titanium dioxide with nanometric thickness

    Composite Materials Infiltrated by Aluminium Alloys Based on Porous Skeletons from Alumina, Mullite and Titanium Produced by Powder Metallurgy Techniques

    Get PDF
    The infiltration technology with reinforcement in the form of porous skeletons fabricated with powder metallurgy methods has been presented in relation to the general characteristics of metal alloy matrix composite materials. The results of our own investigations are presented pertaining to four alternative technologies of fabrication of porous, sintered skeletons, and their structure and their key technological properties are presented. Porous skeletons made of Al2O3 aluminium are sintered reactively using blowing agents or are manufactured by ceramic injection moulding (CIM) from powder. Porous skeletons made of 3Al2O3⋅2SiO2 mullite are achieved by sintering a mixture of halloysite nanotubes together with agents forming an open structure of pores. Titanium porous skeletons are achieved by selective laser sintering (SLS). The structure and properties of composite materials with an aluminium alloy matrix—mainly EN AC-AlSi12 and also EN AC-AlSi7Mg0.3 alloys—reinforced with the so manufactured skeletons are also described. A unique structure of the achieved composite materials, together with good mechanical properties and abrasive wear resistance at low density, ensured by an aluminium alloy matrix, are indicating broad application possibilities of such composites

    Nitinol Type Alloys General Characteristics and Applications in Endodontics

    No full text
    A very extensive literature review presents the possibilities and needs of using, in endodontics, the alloys commonly known as nitinol. Nitinol, as the most modern group of engineering materials used to develop root canals, is equilibrium nickel and titanium alloys in terms of the elements’ atomic concentration, or very similar. The main audience of this paper is engineers, tool designers and manufacturers, PhD students, and students of materials and manufacturing engineering but this article can also certainly be used by dentists. The paper aims to present a full material science characterization of the structure and properties of nitinol alloys and to discuss all structural phenomena that determine the performance properties of these alloys, including those applied to manufacture the endodontic tools. The paper presents the selection of these alloys’ chemical composition and processing conditions and their importance in the endodontic treatment of teeth. The results of laboratory studies on the analysis of changes during the sterilization of endodontic instruments made of nitinol alloys are also included. The summary of all the literature analyses is an SWOT analysis of strengths, weaknesses, opportunities, and threats, and is a forecast of the development strategy of this material in a specific application such as endodontics

    Is Gutta-Percha Still the “Gold Standard” among Filling Materials in Endodontic Treatment?

    No full text
    The paper is an extensive monographic review of the literature, and also uses the results of the authors’ own experimental research illustrating the noticed developmental tendencies of the filling material based on gutta-percha. The whole body of literature proves the correctness of the research thesis that this material is the best currently that can be used in endodontics. Caries is one of the most common global infectious diseases. Since the dawn of humankind, the consequence of the disease has been the loss of dentition over time through dental extractions. Both tooth caries and tooth loss cause numerous complications and systemic diseases, which have a serious impact on insurance systems and on the well-being, quality, and length of human life. Endodontic treatment, which has been developing since 1836, is an alternative to tooth extraction. Based on an extensive literature review, the methodology of qualifying patients for endodontic treatment was analyzed. The importance of selecting filling material and techniques for the development and obturation of the root canal during endodontic treatment was described. Particular attention was paid to the materials science aspects and the sequence of phase transformations and precipitation processes, as well as the need to ensure the stoichiometric chemical composition of Ni–Ti alloys, and the vacuum metallurgical processes and material processing technologies for the effects of shape memory and superelasticity, which determine the suitability of tools made of this alloy for endodontic purposes. The phenomena accompanying the sterilization of such tools, limiting the relatively small number of times of their use, play an important role. The methods of root canal preparation and obturation methods through cold side condensation and thermoplastic methods, including the most modern of them, the thermo-hydraulic condensation (THC) technique, were analyzed. An important element of the research hypothesis was to prove the assumption that to optimize the technology of development and obturation of root canals, tests of filling effectiveness are identified by the density and size of the gaps between the root canal wall, and the filling methods used and devices appropriate for material research, using mainly microscopy such as light stereoscopic (LSM) and scanning electron (SEM). The most beneficial preparations were obtained by making a longitudinal breakthrough of 48 natural human teeth, extracted for medical reasons, different from caries, with compliance with all ethical principles in this field. The teeth were prepared using various methods and filled with multiple obturation techniques, using a virtual selection of experimental variants. The breakthroughs were made in liquid nitrogen after a one-sided incision with a narrow gap created by a diamond disc using a materialographic cutter. The best effectiveness of the root canal filling was ensured by the technology of preparing the root canals with K3 rotary nitinol tools and filling the teeth with the THC thermoplastic method using the System B and Obtura III devices with studs and pellets of filling material based on gutta-percha after covering the root canal walls with a thin layer of AH Plus sealant. In this way, the research thesis was confirmed

    What Are the Chances of Resilon to Dominate the Market Filling Materials for Endodontics?

    No full text
    This paper is a literature review with additional virtual analyses of the authors’ own experimental research results. Knowledge from various areas was synergistically combined, appropriately for concurrent engineering, presenting several possible methodological approaches used in research, optimizing the selection of engineering materials and the conditions of their application with particular application in endodontics. Particular attention was paid to the theoretical aspects of filling material strengths, weaknesses, opportunities, and threats SWOT analysis. Attention was paid to the original concepts of Sustainable Dentistry Development in conjunction with Dentistry 4.0, which includes endodontics as an important element. The dentists’ actions, among others, in conservative dentistry, along with endodontics, requires close cooperation with engineers and the enginering sciences. Methods of root canal preparation were described, together with selected tools, including those made of nitinol. Principles concerning the process of cleaning and shaping the pulp complex are presented. The importance of obturation methods, including the Thermo-Hydraulic-Condensation THC technique, and the selection of filling materials with the necessary sealants for the success of endodontic treatment are discussed. The experimental studies were carried out in vitro on human teeth removed for medical reasons, except for caries, for which two groups of 16 teeth were separated. After the root canal was prepared, it was filled with studs and pellets of a filling material based on polyester materials, which has gained the common trade name of resilon or, less frequently, RealSeal (SybronEndo) with an epiphany sealant. The teeth for the first group were obturated by cold lateral condensation. In the second case the obturation was performed using the Thermo-Hydraulic-Condensation technique using System B and Obtura III. The experimental leakage testing was done using a scanning electron microscope SEM and a light stereoscopic microscope LSM, as typical research tools used in materialography. The research results, in a confrontation with the data taken from the literature studies, do not indicate the domination of resilon in endodontics
    corecore