22 research outputs found
bis-Nitrile and bis-Dialkylcyanamide Platinum(II) Complexes as Efficient Catalysts for Hydrosilylation Cross-Linking of Siloxane Polymers
cis- and trans-Isomers of the platinum(II) nitrile complexes [PtCl2(NCR)2] (R = NMe2,
N(C5H10), Ph, CH2Ph) were examined as catalysts for hydrosilylation cross-linking of vinyl-terminated
polydimethylsiloxane and trimethylsilyl-terminated poly(dimethylsiloxane-co-ethylhydrosiloxane)
producing high quality silicone rubbers. Among the tested platinum species the cis-complexes
are much more active catalysts than their trans-congeners and for all studied platinum complexes
cis-[PtCl2(NCCH2Ph)2] exhibits the best catalytic activity (room temperature, c = 1.0 10 4 mol/L,
pot-life 60 min, curing 6 h). Although cis-[PtCl2(NCCH2Ph)2] is less active than the widely used
Karstedt’s catalyst, its application for the cross-linking can be performed not only at room temperature
(c = 1.0 10 4 mol/L), but also, more efficiently, at 80 C (c = 1.0 10 4–1.0 10 5 mol/L) and
it prevents adherence of the formed silicone rubbers to equipment. The usage of the cis- and
trans-[PtCl2(NCR)2] complexes as the hydrosilylation catalysts do not require any inhibitors and,
moreover, the complexes and their mixtures with vinyl- and trimethylsilyl terminated polysiloxanes
are shelf-stable in air. Tested catalysts do not form colloid platinum particles after the cross-linking.This project was supported by Federal Target Program (grant 14.576.21.0028).
Andrey V. Vlasov and Vadim Yu. Kukushkin are much obliged to Saint Petersburg State University for a
postdoctoral fellowship (12.50.1188.2014) and research grant (12.38.225.2014), correspondingly. The authors also express their gratitude to the Center of Thermal Analysis and Calorimetry (Saint Petersburg State University) for physicochemical measurements
Analytical “Bake-Off” of Whole Genome Sequencing Quality for the Genome Russia Project Using a Small Cohort for Autoimmune Hepatitis
A comparative analysis of whole genome sequencing (WGS) and genotype calling was initiated for ten human genome samples sequenced by St. Petersburg State University Peterhof Sequencing Center and by three commercial sequencing centers outside of Russia. The sequence quality, efficiency of DNA variant and genotype calling were compared with each other and with DNA microarrays for each of ten study subjects. We assessed calling of SNPs, indels, copy number variation, and the speed of WGS throughput promised. Twenty separate QC analyses showed high similarities among the sequence quality and called genotypes. The ten genomes tested by the centers included eight American patients afflicted with autoimmune hepatitis (AIH), plus one case’s unaffected parents, in a prelude to discovering genetic influences in this rare disease of unknown etiology. The detailed internal replication and parallel analyses allowed the observation of two of eight AIH cases carrying a rare allele genotype for a previously described AIH-associated gene (FTCD), plus multiple occurrences of known HLA-DRB1 alleles associated with AIH (HLA-DRB1-03:01:01, 13:01:01 and 7:01:01). We also list putative SNVs in other genes as suggestive in AIH influence
Genome-Wide Mycobacterium tuberculosis Variation (GMTV) Database: A New Tool for Integrating Sequence Variations and Epidemiology
Background
Tuberculosis (TB) poses a worldwide threat due to advancing multidrug-resistant strains and deadly co-infections with Human immunodeficiency virus. Today large amounts of Mycobacterium tuberculosis whole genome sequencing data are being assessed broadly and yet there exists no comprehensive online resource that connects M. tuberculosis genome variants with geographic origin, with drug resistance or with clinical outcome. Description
Here we describe a broadly inclusive unifying Genome-wide Mycobacterium tuberculosis Variation (GMTV) database, (http://mtb.dobzhanskycenter.org) that catalogues genome variations of M. tuberculosis strains collected across Russia. GMTV contains a broad spectrum of data derived from different sources and related to M. tuberculosis molecular biology, epidemiology, TB clinical outcome, year and place of isolation, drug resistance profiles and displays the variants across the genome using a dedicated genome browser. GMTV database, which includes 1084 genomes and over 69,000 SNP or Indel variants, can be queried about M. tuberculosis genome variation and putative associations with drug resistance, geographical origin, and clinical stages and outcomes. Conclusions
Implementation of GMTV tracks the pattern of changes of M. tuberculosis strains in different geographical areas, facilitates disease gene discoveries associated with drug resistance or different clinical sequelae, and automates comparative genomic analyses among M. tuberculosis strains
Genome-wide sequence analyses of ethnic populations across Russia
The Russian Federation is the largest and one of the most ethnically diverse countries in the world, however no centralized reference database of genetic variation exists to date. Such data are crucial for medical genetics and essential for studying population history. The Genome Russia Project aims at filling this gap by performing whole genome sequencing and analysis of peoples of the Russian Federation. Here we report the characterization of genome-wide variation of 264 healthy adults, including 60 newly sequenced samples. People of Russia carry known and novel genetic variants of adaptive, clinical and functional consequence that in many cases show allele frequency divergence from neighboring populations. Population genetics analyses revealed six phylogeographic partitions among indigenous ethnicities corresponding to their geographic locales. This study presents a characterization of population-specific genomic variation in Russia with results important for medical genetics and for understanding the dynamic population history of the world's largest country
Turbulent mixing due to surface waves indicated by remote sensing of suspended particulate matter and its implementation into coupled modeling of waves, turbulence and circulation
This paper studies the impact of the surface waves on the turbulent mixing. The satellite observations of Suspended Particulate Matter (SPM) at ocean surface as an indicator of turbulent quantities of the flow are used. In a water column, SPM builds a vertical profile depending on settling velocities of the particles and on vertical mixing processes, thus SPM is a perfect marker to study the turbulent quantities of the flow. Satellite observations in the North Sea show that surface SPM concentrations, in locations of its deposition, grow rapidly and build plume-shaped, long (many km) uninterrupted and consistent structures during a storm. Also, satellites reveal that SPM rapidly sinks to the seabed after the storm peak has passed and wave height decreases, i.e. with absence of strong turbulence.
The non-breaking wave-induced turbulence has been discussed, parameterized and implemented into an equation of evolution of turbulent kinetic energy (TKE) in the frame of mean-flow concept, which can be used in existing circulation models. The ratio between dissipated and total wave energy is used to describe the influence of wave dumping on the mean flow. Our numerical tests reproduce experiments in a wave tank very well and are supported by observations of SPM in the North Sea. Our results show that the motion of an individual non-breaking wave includes turbulent fluctuations if the critical Reynolds number for wave motion is exceeded, independent from presence of currents due to wind or tides. These fluctuations can produce high diffusivity and strongly influences mixing in the upper water layer of the ocean
Iridium(III)-catalysed cross-linking of polysiloxanes leading to the thermally resistant luminescent silicone rubbers
Iridium(iii) cross-linking catalysts for silicones show a unique temperature-curing profile and lead to thermally resistant and luminescent silicone rubbers.</p
Recommended from our members
Predictors and prediction skill for marine cold-air outbreaks over the Barents Sea
Marine cold-air outbreaks (MCAOs) create conditions for hazardous maritime mesocyclones (polar lows) posing risks to marine infrastructure. For marine management, skilful predictions of MCAOs would be highly beneficial. For this reason, we investigate (a) the ability of a seasonal prediction system to predict MCAOs and (b) the possibilities to improve predictions through large-scale causal drivers. Our results show that the seasonal ensemble predictions have high prediction skill for MCAOs over the Nordic Seas for about 20 days starting from November initial conditions. To study causal drivers of MCAOs, we utilize a causal effect network approach applied to the atmospheric reanalysis ERA-Interim and identify local sea surface temperature and atmospheric circulation patterns over Scandinavia as valuable predictors. Prediction skill for MCAOs is further improved up to 40 days by including MCAO predictors in the analysis
A Simple Method of Synthesis of 3-Carboxy-2,2,5,5-Tetraethylpyrrolidine-1-oxyl and Preparation of Reduction-Resistant Spin Labels and Probes of Pyrrolidine Series
Stable free radicals are widely used as molecular probes and labels in various biophysical and biomedical research applications of magnetic resonance spectroscopy and imaging. Among these radicals, sterically shielded nitroxides of pyrrolidine series demonstrate the highest stability in biological systems. Here, we suggest new convenient procedure for preparation of 3-carboxy-2,2,5,5-tetraethylpyrrolidine-1-oxyl, a reduction-resistant analog of widely used carboxy-Proxyl, from cheap commercially available reagents with the yield exceeding the most optimistic literature data. Several new spin labels and probes of 2,2,5,5-tetraethylpyrrolidine-1-oxyl series were prepared and reduction of these radicals in ascorbate solutions, mice blood and tissue homogenates was studied